
Loops and the Geometry of Chance

Jens Jäger

forthcoming in Noûs
penultimate draft (January 8, 2025)

Abstract

Suppose your evil sibling travels back in time, intending to lethally poison your

grandfather during his infancy. Determined to save grandpa, you grab two antidotes

and follow your sibling through the wormhole. Under normal circumstances, each

antidote has a 50% chance of curing a poisoning. Upon finding young grandpa,

poisoned, you administer the first antidote. Alas, it has no effect. The second antidote

is your last hope. You administer it—and success: the paleness vanishes from grandpa’s

face, he is healed. As you administered the first antidote, what was the chance that it

would be effective? This essay offers a systematic account of this case, and others like it.

The central question is this: Given a certain time travel structure, what are the chances?

In particular, I’ll develop a theory about the connection between these chances and

the chances in ordinary, time-travel-free contexts. Central to the account is a Markov

condition involving the boundaries of spacetime regions.
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1 Introduction

You’re a star pharmacist, and you’ve invented a universal antidote, able to cure any poi-
soning. Unfortunately, the antidote isn’t perfectly reliable: normally, given any poisoning,
there’s a 50% chance that it’ll cure it. One day, your evil sibling travels back in time,
intending to lethally poison your grandfather, back when he was still an infant. Deter-
mined to save grandpa, you grab two antidotes and follow your sibling into the wormhole.
(“Better to bring more than one!”, you think.) Upon finding infant grandpa, poisoned, you
administer the first antidote. Alas, it doesn’t work. The second antidote is your last hope.
You administer it—and success: the paleness vanishes from grandpa’s face, he is cured.

As you administered the first antidote, what was the chance that it would be effective?
Perhaps 0? After all, it already failed: its failure is what causes the second antidote’s
success, which causes grandpa’s survival, which causes your being born... On the other
hand, the antidote’s failure is also still future—some time will pass until it occurs—and
the present leaves it open which of the two antidotes is ultimately effective. So perhaps
the chance is 0.5, because that’s what it normally is? No. I’ll argue that, on a salient
interpretation of “as you administered the first antidote”, the answer is 2/3.

The essay’s broader question is this: Given a time travel structure, what are the chances?
This is distinct from asking what the chances are of wormholes and other time-travel struc-
tures arising in the first place—a question reserved for physicists studying the mechanisms
behind such structures.

Why care about our question? Where time travel involves spacetime loops—informally,
trajectories which travel back in time to their origins—it has been of continued interest to
physicists.1 Part of a philosopher of science’s responsibility is to interpret what physicists
study.

But more importantly, our inquiry yields significant philosophical insights. Previously,
philosophical investigations into chance have largely assumed standard spacetime back-
grounds.2 As we’ll see, this practice misses important lessons. Assuming that spacetime
loops are metaphysically possible, our account challenges two orthodoxies about chance.
First, it’ll show that chances aren’t as intimately tied to time or causation as is usually
thought; and second, that chances aren’t necessarily constant across intrinsically duplicate
trials. I’ll replace these orthodoxies with a view on which chances are tied, not to temporal
histories, but to chance setups, and on which chances on loops differ from the ordinary
chances in systematic, scrutable ways. Our final account provides a complete theory for

1E.g., Gödel (1949), Carter (1968), Echeverria, Klinkhammer, and Thorne (1991), and Earman (1995).
2Viz., globally hyperbolic Lorentzian backgrounds, or classical Newtonian or Galilean backgrounds.
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chances on loops, for any setup.3

The account is founded on two principles about the relationship between chance and
spacetime structure. One key principle concerns the familiar idea of “screening off”. In
assessing the probability of some proposition C, we say that A screens off B from C if A
renders any information provided by C about B irrelevant. For example, suppose I’d like
to know if I carry a certain genetic marker. Given complete information about my parents’
genes (A), no information about my grandparents’ genes (C) should affect my confidence
of my carrying the gene (B): complete information about A screens off any information
C would provide about B. With respect to chance, what screens off what is partially
determined by spacetime structure. Specifically, I defend the idea that, given a local
dynamics, what’s happening at a spacetime region’s boundary screens off what happens
on the region’s inside from what happens on its outside. This provides a systematic
connection between chances on loops and the ordinary, time-travel-free chances.

The essay is structured as follows. To streamline the discussion, section 2 introduces a
simple, stripped-down spacetime loop scenario—grandpa will reappear later. In Sections
3–5, I survey two accounts of this case. One is based on the orthodox “temporalist”
framework of chance, promulgated by Lewis (1987); the other is based on the idea that
chances are invariant across intrinsically duplicate trials. The first account often trivializes
chances on spacetime loops, and the second account leads to inconsistency. Both should
thus be rejected. This sets the stage for my positive proposal. In Sections 6 and 7, I
explain the proposal’s two core principles, Acyclic Chance Invariance and Strong Boundary
Markov. Section 8 applies these two principles to the simple loop scenario. Section 9
revisits the stochastic grandfather paradox and develops a general recipe for deriving
chances on loops. Section 10 corrects a misconception regarding chances on loops. It
shows that, in stark contrast to the acyclic case, in cyclic spacetimes the dynamics alone
manages to fix unconditional chances over the states of the universe, thus generating a
“complete probability map of the world”. Similarly, the dynamics generically fixes precise
expectations about what will emerge from future wormholes. Section 11 concludes.

2 A Simple Case

The previous scenario involves a spacetime loop: your saving your infant grandfather
leads to him growing up and having children, one of whom bears you and your sibling,

3Provided the background geometry is static, as e.g. in special relativity. A generalization to theories
with dynamical spacetime structure (such as general relativity) is a topic for future work. Still, I hope the
present proposal marks significant progress in that direction.
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Figure 1: A sketch of CIRCLE.

which leads you to eventually enter the wormhole, ending up in front of infant grandfather.
For the purpose of discovering general principles about cases like this, let’s start with a
particularly simple spacetime loop world, called CIRCLE.

Imagine a single stationary particle, occupying a single point of space, persisting in
circular time. For concreteness, let the cycle have a period of 100 billion years—that is,
persisting for 100 billion years from now gets the particle back to the present. Heuristically,
you may picture the spacetime as an infinitely thin strip of paper, with an arrow drawn
parallel to the strip, and whose ends you’ve glued together. This circular strip is a crude
representation of a universe consisting of a single point of space, persisting in circular
time, with the arrow indicating the time’s direction. Now picture a small marble sitting
at every point along the strip. The marbles represent the particle’s different time slices,
successively occupied by the particle as it persists through time. Together, this yields a
crude representation of a single particle in a circular, one-dimensional spacetime.4

Let’s stipulate a simple dynamics for the particle. Let the particle have two intrinsic
magnitudes, color and clock. The particle’s clock grows in proportion to the time passed,
until it reaches 24 hours, at which point it restarts from 0. The particle sometimes changes
colors, exactly at clock restart points. You only ever observe three possible colors and three
possible transitions: red to green, green to blue, and blue to red. (See fig. 1.) Moreover, you
observe a color change at about 2 out of 10 reset points.

4Mathematically, we can represent CIRCLE by a one-dimensional, oriented, closed Lorentzian (or, equiva-
lently in the one-dimensional case, Riemannian) manifold—that is, a circle equipped with a metric. Note that
the one-dimensional is illustrative not only because it’s particularly simple, but also because one-dimensional
oriented spaces commonly appear as base spaces in fibre bundle constructions of other spaces, e.g. of Galilean
spacetime or of the configuration-space-in-time relevant to some interpretations of quantum mechanics.

3



Suppose the particle is currently red, and you’d like to calculate the chance that it’ll still
be red tomorrow. Two hypotheses may jump out, paralleling those about the stochastic
grandfather paradox. One might think that the chance that the particle changes color at the
next reset point is 1 if it actually changes color, and 0 if it doesn’t. After all, whatever the
particle does has already happened. But then again, whatever happens is still to happen,
and the particle’s current color leaves tomorrow’s color open. So perhaps the chance of
a color switch is just what it ordinarily is. The following sections survey two proposals,
capturing the two hypotheses. I argue that both should be rejected.

3 Against Temporalism

Chances vary in time: Wilbur and Orville Wright flipped a coin to settle who would fly first.
As the coin was flipped, both had a positive chance of being the first to fly. But because
Orville lost the flip, today there’s chance 0 that he flew first. Lewis’s (1987) framework
therefore relativizes chances to times:

Temporalism about chance:

1. Necessarily, chance is a function of two arguments, a proposition and a
time.5

2. Necessarily, if chance is the function ch, then for any time t, ch(·, t) assigns
chance 1 to t’s temporal history, i.e. to the strongest truth “entirely about
matters of particular fact” (Lewis, 1987) at times at or before t.6

The second clause causes trouble. In CIRCLE, every time precedes every other time. Given
this, clause 2 trivializes all chances in CIRCLE: it implies that every chance function assigns

5Officially, Lewis adds a third argument, a world, where “ch(A, t, w)” (or “Ptw(A)” in his notation) refers
to “the chance, at time t and world w, of A’s holding” (87). By contrast, we’re setting up chance as a contingent
relation here (between a proposition, time, and real number). I find this latter setup more perspicuous,
because it’s neutral on the underlying account of contingency (e.g., if it’s worlds-based, or something else).
But nothing of significance will hang on this here.

6Actually, the original quote says “entirely about matters of particular fact at times no later than t” (Lewis,
1987). This, incidentally, doesn’t fall prey to the objection below: since in CIRCLE every time is later than any
other time, this account simply places no constraints at all on ch(·, t) in CIRCLE. Now, it’s clear that Lewis
himself doesn’t use “no later than t” to distinguish it from “at or before t”. (As evidenced a few paragraphs
later, where he writes, of a proposition A about states of affairs at time tA, that “[i]f t is later than tA, then A
is admissible at t” (Lewis, 1987). Temporalism entails that A is admissible, and hence receives chance 1, at t
only if “t is later than tA” entails “tA is no later than t”. But “t is later than tA” is equivalent to “tA is before
t”, and so Lewis must assume that “tA is before t” entails “tA is no later than t”. Since Lewis also thinks
that A is admissible at t if tA is simultaneous with t, it follows that he must assume that “tA is at or before t”
entails “tA is no later than t”.) In any case, an account which places no constraints at all on ch(·, t) in
CIRCLE is seriously incomplete. For example, surely ch(·, t) will at least assign chance 1 to the state of the
world at t. Temporalism, as formulated in the main text, is thus a proposal for filling out the account.
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chance 1 to the particle’s actual complete color history, and 0 to every non-actual history.
As a valid argument:

(i) For all times t and t′, t′ is at or before t.

(ii) For all times t and t′, if t′ is at or before t, then the temporal history of t entails what
color the particle is at t′.

(iii) For any time t, ch(·, t) assigns chance 1 to t’s temporal history.

(iv) For all propositions A and B and times t, if A entails B and ch(A, t) = 1, then
ch(B, t) = 1.

∴ For all times t and t′, ch(·, t) assigns chance 1 to what color the particle is at t′.

Premise (ii) follows from the definition of temporal history; (iii) follows from temporalism’s
clause 2; and (iv) follows from the fact that ch(·, t) is a probability function. Premise (i),
meanwhile, is supported by two thoughts: (a) there is some small duration ε such that, for
any t, all times no more than ε into t’s past are before t, and (b) “before” is transitive. While
it’s logically possible to either deny (a) or deny (b), neither possibility seems attractive.
Regarding (a): surely, if any times are before t in CIRCLE, it includes those in t’s most recent
past. Meanwhile, holding that no times are before t falsifies evident truths: for example,
despite the particle’s changing color from red to green, it wouldn’t be the case that the
particle has previously been red. Moreover, the reply would at best secure silence about
CIRCLE. Yet our aim is a positive theory about chances on loops. Regarding (b): denying
transitivity burdens us with arbitrary cutoffs—when is t′ just far enough in t’s past that
it’s no longer “before” t? I see no principled way to draw this distinction.

The trivialization of chances in CIRCLE is problematic for two connected reasons.7 First,
recall the regularity you observe: whenever the particle has a given color, in about 2 out of
10 cases it’ll have a different color the next day. It would seem extremely natural—and
useful, and informative—to try to describe this behavior in non-trivial chance-theoretic
terms. Indeed, it seems just as natural to do so in CIRCLE as it does in any linear world. But
that’s incompatible with Clause 2.

7Lewis (1987) is aware that temporalism has issues with time travel. He notes that the existence of time
travelers may make some past information inadmissible: “That is why I qualified my claim that historical
information is admissible, saying only that it is so ’as a rule’.” (ibid., 274) But Lewis mentions this problem
only to discard it: he states that he merely wants to argue that “the Principal Principle captures our common
opinions about chance” and those common opinions, he says, “may rest on a naive faith that past and future
cannot possibly get mixed up”. (ibid., 274) I find it doubtful that our common opinions include any clear
judgment about the possibility of time travel. In any case, Lewis admits that “[a]ny serious physicist, if
he remains at least open-minded both about the shape of the cosmos and about the existence of chance
processes, ought to do better” (ibid., 274). Philosophers should, too.
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Secondly, a universe with circular time is still compatible with our empirical evidence.8

If this speculative scenario was true, would it falsify all scientific theories involving non-
trivial chances? Would it mean, for example, that radioactive decay wasn’t stochastic after
all? The answer is clearly no. But this contradicts temporalism’s clause 2. So we should
reject temporalism.9

4 Urchance

The problem with temporalism is that its chance functions must be certain of complete
temporal histories. To deliver non-trivial chances in cyclic spacetimes, the correct chance
theory has to be more flexible.

As Hall (2004) observes, temporalism can be reformulated by stipulating the existence
of an “urchance” function, given to us by the fundamental physical laws. The chance
function at a time t, cht, is then the result of conditioning said urchance function on the
temporal history up to t, Ht, i.e., cht(·) = urchance(·|Ht). One advantage of the urchance
approach is that it automatically ensures that chance functions at different times “cohere”
with one another, viz. that chance functions at later times result from conditioning those at
earlier times on intervening history. Coherence is mandated by canonical chance deference
principles like the Principal Principle.10

Now, the temporalist considers only the results of conditioning the urchance function
on complete temporal histories. But sometimes the result of conditioning the urchance
function on non-history propositions is also well-defined. This much follows already from
the probability laws alone: where urch is the urchance function and Ht the world’s history
up to t, whenever urch(·|Ht) assigns positive probability to some A, urch(·|Ht A) =

urch(· ∧ A|Ht)/urch(A|Ht) is a well-defined probability function even if Ht A isn’t a

8For example, it is compatible with our empirical evidence that our universe is (representable by) a
four-dimensional time-like closed Lorentzian manifold. Such a manifold is permitted by Einstein’s field
equations, and if spatially flat, accords with general astronomical observations about the shape of our
universe. (The role of the Past Hypothesis in such a world would be played by the posit that there is a
low-entropy macrostate at some time, with entropy increasing bidirectionally from there.)

9Cusbert (2018; 2022) has recently suggested replacing temporalism with a “causal history view” of
chance: instead of having ch(·, t) assign chance 1 to t’s temporal history, have it assign chance 1 to t’s
causal history instead. (Cusbert’s formalism replaces “times” with “globally connected sets” of events—this
difference doesn’t matter here.) But this fares no better than temporalism in CIRCLE: the particle’s color at
each day is caused by the color the previous day. Moreover, causal histories are transitively closed (even if
causation isn’t). So Cusbert’s view also trivializes chance in CIRCLE.

10To see this: the Principal Principle (in one of its canonical formulations, Lewis (1987)) says that, where
Cr0 is any rational initial credence function, t any time, Ht the world’s actual history up to t, and T the true
chance theory, Cr0(A|HtT) = cht(A). Where H[t,t+ ] is the intervening history from t to t+, it follows that
cht+(A) = Cr0(A|Ht+T) = Cr0(A|H[t,t+ ]HtT) = cht(A|H[t,t+ ]), provided H[t,t+ ] has positive chance at t.
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complete temporal history. The fundamental dynamical laws go yet beyond this. Consider
any bounded history segment. Since it is bounded, it doesn’t entail any complete temporal
history; yet, together with the fundamental dynamical laws, the segment’s state generically
entails a well-defined probability distribution over the segment’s possible futures. (In the
deterministic case, this probability distribution is trivial.) So, insofar as urchance encodes
exactly the content of the fundamental dynamical laws, the result of conditioning it on
non-history propositions is often well-defined too.

In my view, urchance is naturally thought of as encoding (exactly) the content of the
fundamental dynamical laws. The results of conditioning it on non-history propositions
are then objective chance functions: since they follow from the fundamental dynamical
laws alone, they are objective; they are “single-case” probabilities—viz., urch(·|B) exists
and is generally non-trivial, even if an event described by B occurs only once; they respect
dynamical symmetries; and they go with straightforward deference principles.11

Now, the fundamental dynamical laws aren’t generally so powerful that urch(A|B) is
precisely defined for all physically specifiable A and B. Some B are too weak for some A: for
example, a contingent proposition generally won’t have a precise probability conditional
on a logical tautology. In the following paragraphs, I outline a framework for capturing
this predictive weakness using imprecise probability. While the framework underpins
the remainder of the paper, it is designed so that the paper’s main philosophical insights
remain accessible without it. (Specifically, the formalism is designed so that all main text
equations are interpretable under the simplifying, albeit false, assumption that urch is a
precise probability function.) Readers who prefer to skip formalism may proceed to the
final paragraph of this section.

To capture urchance’s predictive weaknesses, we express it not in terms of a single
probability function, but in terms of a set of probability functions. Intuitively, these
functions are all the precisifications of the fundamental laws’ probability judgments.12

Accordingly, A has a precise chance x conditional on B iff all functions in the set assign A
probability x conditional on B. Where the functions disagree, the best we can do is assign
A a set of chance values conditional on B. Officially, we let these functions be two-place,

11 One such principle, compatible with the Principal Principle: where Cr0 is any rational prior credence
function, A and E are any propositions, and 〈urchance(A|E) = x〉 is the proposition that the urchance of A,
conditional on E, is x: Cr0(A|E ∧ 〈urchance(A|E) = x〉) = x.

12Cf. van Fraassen (1984), who presents a set-based (or “representor”-based) formalism for credences.
There are significant philosophical advantages to a set-based formalism over less expressive alternatives,
such as one using partial urchance functions. For example, a set-based formalism can express probabilistic
independencies even where no precise unconditional probabilities exist (cf. Joyce (2010))—this enables
our definitions of Markov properties in Section 7. A set-based formalism also streamlines the proofs in
Appendix C.
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total, primitively conditional probability functions (cf. Hájek (2003)).13

Now, one way to proceed would be to identify urchance directly with the set of
probability functions induced by the true fundamental dynamical laws. More conveniently,
however, we define it as follows. Where u is the set of all precisifications of the dynamical
laws’ probability judgments, urchance urch(·|·) is a function from pairs of propositions
into functions on u: specifically, for any pair (X, Y) of propositions, urch(X|Y) is the
function from u into [0, 1] mapping u ∈ u to u(X|Y)—that is, urch(X|Y)(u) = u(X|Y).
Intuitively, urch(X|Y) isn’t merely a set of values, but (additionally) keeps track of which
member of u assumes which value.

This way of defining urchance has the advantage that arithmetic operations on urch(·|·)
can be defined in the standard functional way, i.e., they apply point-wise. For example,
urch(A|B) · urch(C|D) denotes the function which maps each u ∈ u to the value u(A|B) ·
u(C|D). Similarly, equality is point-wise: urch(A|B) = urch(C|D) says that the both
sides agree everywhere on their domain, i.e. for all u ∈ u, u(A|B) = u(C|D), while
urch(A|B) = x says that the left-hand side has constant value x, i.e. for all u ∈ u,
u(A|B) = x. Intuitively, whenever you see an expression like urch(A|B) in an equation,
read it as the equation’s holding determinately, i.e. for all members of u. (The same goes for
inequalities, >, and approximate equalities, ≈.) Conditioning is equally straightforward:
for any proposition B, urch(·| · ∧B) maps any pair (X, Y) of propositions to the function
on u mapping each u ∈ u to u(X|Y ∧ B).

Our definition entails that, whenever all members of u satisfy an equation involv-
ing only arithmetic operations and conditioning, urch satisfies an equation of the exact
same form. These equations include the probability axioms. For example, since all mem-
bers of u satisfy the multiplicative axiom, urch satisfies an expression of the same form,
urch(AB|C) = urch(A|BC) · urch(B|C). Defining urchance as we have allows us to use
syntactically familiar equations.

Where urch is the urchance function, I’ll call B the “background proposition” for the
function urch(·| · ∧B).14 The urchance formalism enables theories of non-trivial chances in

13 Primitive conditionality is needed because sometimes A has precise chance conditional on B even if B
has (precisely) zero prior chance. Popper ([1959] 1968, App. *IV and *V) offers a convenient axiomatization of
total primitively conditional probability. His axioms—specifically, the version with mere finitely additivity—
are what I’ll mean throughout by “the laws of probability”. The axioms include the standard multiplicative
axiom, p(A ∧ B, C) = p(A, B ∧ C) · p(B, C), finite additivity, and the probabilistic analogue of explosion,
p(A, B ∧ ¬B) = 1. We’ll also assume that any member of the set induced by some fundamental dynamical
laws is “maximally sure” exactly of anything metaphysically entailed by those laws. That is, for all members
p of the set, p(A|¬A) = 1 iff A is metaphysically entailed by L. In particular, no member assigns maximal
prior chance to any nomically contingent matter of fact.

14The terminology of “background proposition” is also used in Nelson (2009) and Cusbert (2018). Other
authors with flexible chance formalisms include Meacham (2005), Nelson (2009), Briggs (2010), Handfield
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cyclic worlds: chance functions with background propositions weaker than any temporal
history can assign non-trivial probabilities to contingent matters of fact. The second
account attempts to build on this flexibility to construct a theory of non-trivial chances—
unsuccessfully so.

5 Against Chance Invariance

Consider again an infinitely thin strip of paper, but this time leave its ends unjoined. Call
the represented world LINE (or L for short).15 This world is inhabited by the same sort of
particle as CIRCLE, subject to the same laws. Now suppose you are told that, in LINE, upon
clock reset there’s (precisely) a 0.2 chance that the particle changes color (from red to green,
green to blue, or blue to red). What can we infer from this about the chances in CIRCLE?
What would the transition chances be if the spacetime was cyclic rather than linear?

A natural idea is that the chances would be unchanged—that transition chances in
circular spacetimes are just what they are in identical “linear” situations. This is suggested
by the popular idea that objective chances are, as Schaffer (2003) puts it, “stable”. Arntze-
nius and Hall (2003, p. 178) express the idea as follows: “if . . . two processes going on
in different regions of spacetime are exactly alike, your [theory should assign] to their
outcomes the same single-case chances”. Or, as Schaffer (2007, p. 125) puts it, “chance
values should remain constant across intrinsically duplicate trials” within the same world.
While these principles strictly speaking only concern chance assignments within the same
world, they have obvious and natural generalizations that also cover chance assignments
across worlds with the same laws. These generalizations dictate the same transition chances
for CIRCLE as for LINE.16

Arntzenius and Hall don’t provide a formally precise version of their principle, and
Schaffer’s (2007) presentation assumes temporalism.17 So let’s formulate a principle
ourselves, for the case of CIRCLE and LINE, using urchance. (Instead of “stability” I choose
the label “invariance”, which I find more fitting.) Informally, the idea is that the chance of

and Wilson (2014), and Cusbert (2018).
15Mathematically, we can represent the world by a one-dimensional, oriented, open Lorentzian (or,

equivalently in the 1D case, Riemannian) manifold—that is, a line equipped with a metric.
16We could also make CIRCLE and LINE world-mates, by connecting them (say) by a space-like line.

Schaffer’s and Arntzenius and Hall’s principles then apply directly.
17Horacek (2005, p.428) and Effingham (2020, p.152) each propose similar principles which also presuppose

temporalism. Cusbert (2022, p. 617, 625–6) meanwhile formulates a version of stability weak enough to
count even the trivialized chances on CIRCLE as “stable” relative to the chances on LINE. This doesn’t strike
me as a promising formulation of stability, going against the intuitions the principle is meant to capture.
Moreover, Cusbert’s principle doesn’t get us out of the trivialization trap.
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an event conditional on the state of an interval in LINE equals the chance of a duplicate
event, conditional on the state of a duplicate interval in CIRCLE, provided the temporal
distances between the event and the interval are the same in both worlds.

More carefully, where t and s are times, let the forward distance from t to s be the smallest
duration from t to s, i.e., the smallest amount of time yo have to persist to get from t to s.
In CIRCLE, there’s a forward distance from any time to any other time. In LINE, a forward
distance from t to s exists iff t occurs earlier than s. Where I and J are intervals, let the
forward distance from I to J be the forward distance from the starting point of I’s closure to
the starting point of J’s closure.18 For example, in CIRCLE (fig. 1), the forward distance
from τ0 to τ2 is 2 days, and the forward distance from τ2 to τ0 is 100 billion years minus 2
days. Moreover, say that two pairs of intervals, (I, J) and (I∗, J∗), are temporally congruous
iff I and I∗ have equal duration, J and J∗ have equal duration, and the forward distance
from I to J equals the forward distance from I∗ to J∗.

Since CIRCLE and LINE have the same fundamental dynamical laws, they share the
same urchance function. Denote by urchC(·|·) and urchL(·|·) the results of conditioning
that function on a complete description of CIRCLE’s and LINE’s spacetime geometry,
respectively.19

Hypothesis. Chance Invariance: Let (I, J) and (I∗, J∗) be temporally congruous
pairs of intervals in CIRCLE and LINE, respectively. Then

urchC(P(J)|Q(I)) = urchL(P(J∗)|Q(I∗)),

for any qualitative intrinsic properties P and Q.

Chance Invariance captures the thought that locally duplicate situations—Q(I) and Q(I∗)—
generate the same chances for locally duplicate outcomes—P(J) and P(J∗)—provided the
relevant temporal distances are the same.

To illustrate the principle, let RED(τ) be the proposition that τ is a 24-hour interval
and that a single particle exists throughout τ, is red throughout τ, and has a clock reading
of 0 at the start of τ. Chance Invariance then requires that urchC(RED(τ1)|RED(τ0)) =

0.8. For consider any two successive days d0 and d1 in LINE. The pairs (d0, d1) and
(τ0, τ1) are temporally congruous. Moreover, from the dynamics in LINE, we have

18If one of the two closures doesn’t have a starting point or if there is no forward distance from I’s starting
point to J’s starting point, the forward distance from I to J is ill-defined.

19That is, where C is a complete description of CIRCLE’s geometry and L is a complete description of LINE’s
geometry, urchC(·|·) :=urch(·| · ∧C) and urchL(·|·) :=urch(·| · ∧L). We’ll always understand complete
geometric descriptions to include a “that’s all” clause—i.e., they say that they describe all geometrical
relationships between spacetime regions.
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Figure 2: A sketch of LINE.

urchL(RED(d1)|RED(d0)) = 0.8. So, by Chance Invariance,

urchC(RED(τ1)|RED(τ0)) = urchL(RED(d1)|RED(d0)) = 0.8.

Alas, Chance Invariance is inconsistent: it defines conditional chances in CIRCLE twice
over, with conflicting results. Essentially, what goes wrong is that, except for antipodes,
any two days in CIRCLE bear two distinct forward distances to each other: depending on
which day comes first, the forward distance is either the short way or the long way around
CIRCLE. For example, the pair (τ0, τ1) has a forward distance of one day, whereas the pair
(τ1, τ0) has a forward distance of 100 billion years minus one day. As a result, the two pairs
are temporally congruous to very different pairs in LINE. This makes Chance Invariance
yield conflicting results.

For illustration, let’s calculate urchC(GREEN(τ1)|RED(τ2) ∧ RED(τ0))—the chance, in
CIRCLE, of the particle’s being green at τ1, conditional on its being red on the two adjacent
days. First consider the pairs (τ0, τ1) and (τ1, τ2) in CIRCLE and the temporally congruous
days (d0, d1) and (d1, d2) in LINE—see figure 2. Chance Invariance yields the following:20

urchC(GREEN(τ1)|RED(τ2)∧RED(τ0)) = urchL(GREEN(d1)|RED(d2)∧RED(d0)). (5)

20Proof: By the multiplicative axiom,

urchC(GREEN(τ1)|RED(τ2)∧RED(τ0)) · urchC(RED(τ2)|RED(τ0)) =

= urchC(GREEN(τ1) ∧ RED(τ2)|RED(τ0)).
(1)

From the congruity of (τ0, τ1) and (d0, d1) and of (τ1, τ2) and (d1, d2), we also have that (τ0, τ2) and (d0, d2)
are congruous and that (τ0, τ1 ∪ τ2) and (d0, d1 ∪ d2) are congruous. So, by Chance Invariance,

urchC(RED(τ2)|RED(τ0)) = urchL(RED(d2)|RED(d0)), (2)

and

urchC(GREEN(τ1) ∧ RED(τ2)|RED(τ0)) = urchL(GREEN(d1) ∧ RED(d2)|RED(d0)). (3)

From eqs. 1–3,

urchC(GREEN(τ1)|RED(τ2)∧RED(τ0)) · urchL(RED(d2)|RED(d0)) =

= urchL(GREEN(d1) ∧ RED(d2)|RED(d0)).
(4)

But, from the given dynamics in LINE, urchL(RED(d2)|RED(d0)) = 0.82 > 0, and so, from eq. 4,

11



But the pair (τ0, τ1) is also temporally congruous with (d−2, d−1) while the “inverse” pair
(τ2, τ1) is temporally congruous with (d0, d−1). This yields:21

urchC(GREEN(τ1)|RED(τ2) ∧ RED(τ0)) = urchL(GREEN(d−1)|RED(d0) ∧ RED(d−2)).
(10)

But eqs. 5 and 10 conflict. Because the dynamics in LINE disallows RED-GREEN-RED
transitions,

urchL(GREEN(d1)|RED(d2) ∧ RED(d0)) = 0.

urchC(GREEN(τ1)|RED(τ2) ∧ RED(τ0)) =
urchL(GREEN(d1) ∧ RED(d2)|RED(d0))

urchL(RED(d2)|RED(d0))

= urchL(GREEN(d1)|RED(d2) ∧ RED(d0)),

where the second line follows by the multiplicative axiom. �
21Proof: By the multiplicative axiom,

urchC(GREEN(τ1)|RED(τ2)∧RED(τ0)) · urchC(RED(τ0)|RED(τ2)) =

= urchC(GREEN(τ1) ∧ RED(τ0)|RED(τ2)).
(6)

From the congruities of (τ2, τ1) and (d0, d−1) and of (τ0, τ1) and (d−2, d−1), we obtain that (τ2, τ0) is congru-
ous with (d0, d−2) and (τ2,τ0 ∪ τ1) is congruous with (d0,d−2 ∪ d−1). So, by Chance Invariance,

urchC(RED(τ0)|RED(τ2)) = urchL(RED(d−2)|RED(d0)), (7)

and
urchC(GREEN(τ1) ∧ RED(τ0)|RED(τ2)) = urchL(GREEN(d−1) ∧ RED(d−2)|RED(d0)). (8)

Plugging eqs. 7 and 8 into eq. 6 yields

urchC(GREEN(τ1)|RED(τ2)∧RED(τ0)) · urchL(RED(d−2)|RED(d0)) =

= urchL(GREEN(d−1) ∧ RED(d−2)|RED(d0)).
(9)

But urchL(RED(d−2)|RED(d0)) ≈ 1/3 > 0, for the particle’s current color provides essentially no evidence
about its far-future color. (To derive this formally, divide the probability-weighted sum of color trajectories
compatible with RED(d−2)∧RED(d0) by the probability-weighted sum of color trajectories compatible with
RED(d0), leading to a formula similar to the expression in fn. 44.) So, from eq. 9,

urchC(GREEN(τ1)|RED(τ2) ∧ RED(τ0)) =
urchL(GREEN(d−1) ∧ RED(d−2)|RED(d0))

urchL(RED(d−2)|RED(d0))

= urchL(GREEN(d−1)|RED(d0) ∧ RED(d−2)),

where the second line follows from the multiplicative axiom. �
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But the same dynamics also entails that22

urchL(GREEN(d−1)|RED(d0) ∧ RED(d−2)) = 0.2 > 0.

Contradiction. So Chance Invariance is inconsistent.

6 Two Vestiges of Invariance

Despite its inconsistency, Chance Invariance has intuitive appeal. Moreover, I think we
can salvage its appealing parts in the form of weaker, and jointly consistent, principles.

First, its restriction to loop-free worlds remains consistent: two intrinsically duplicate
situations in two nomically compatible loop-free worlds generate the same chance distribu-
tions. Let’s call this weaker principle Acyclic Chance Invariance.

Below I’ll spell out a precise version of this principle. To do this, a few concepts are
needed, which will reappear throughout the rest of the paper (and thus shouldn’t be
skipped). Informally, a curve is any directed line (straight or curved) through spacetime.23

A causal curve is any curve through spacetime which could be the trajectory of a material
particle.24,25 Causal curves can be either future-directed or past-directed. A closed causal curve
(or “spacetime loop”, as I called it earlier) is any causal curve which loops back in on itself,
i.e. ends at its starting point. Informally, a region R’s causal past, J−(R), is that part of
spacetime from which a material particle can eventually reach R—we include in this the
entirety of R itself. Meanwhile, R’s causal future, J+(R), is that part of spacetime which
a material particle can eventually reach from the region—again, including R itself.26 R’s

22Proof: Because d−2 is located in between d2 and d−1, RED(d−2) “screens off” RED(d2) from
GREEN(d−1) :

urchL(GREEN(d−1)|RED(d0) ∧ RED(d−2)) = urchL(GREEN(d−1)|RED(d−2)). (11)

(In section 7 I’ll discuss “screening off” much more—the relevant principle, Parental Markov, is true in acyclic
worlds and yields eq. 11.) From the dynamics for LINE we moreover have

urchL(GREEN(d−1)|RED(d−2)) = 0.2. �

23Formally, a curve is a function c : I → M from an interval I ⊆ R into the spacetimeM. A line is the
image of a curve. For bounded curves, we’ll set I = [0, 1] without loss of generality.

24Formally, we define a causal curve to be any differentiable curve with everywhere light-like (null) or
time-like tangent vector.

25“Causal” thus has its technical meaning from physics, in terms of spacetime structure. I don’t presup-
pose that this exactly—or even approximately—tracks the philosopher’s various notions of causality. The
fundamental dynamical laws speak the language of spacetime structure, not causation—so we’re interested
in the former, not the latter.

26More exactly, I define R’s causal future [causal past], J+(R) [J−(R)], as the union of R with all points p

13



proper causal future K+(R) is the difference between the causal future and R, i.e. K+(R) :=
J+(R)\R; R’s proper causal past K−(R) is defined analogously, K−(R) := J−(R)\R. Finally,
throughout, where urch is a possible urchance function and M a possible spacetime,
urchM denotes the result of conditioning urch on a complete description ofM’s geometry.

Now for the precise version of Acyclic Chance Invariance (those who’d like to avoid
formalism may skip this paragraph). We’ll formulate the principle for pairs (R1, R2) of
disjoint regions where R2 is “strictly to the future” of R1, i.e., R2 ⊆ K+(R1) and R1 ∩
K+(R2) = ∅, which I’ll also write as R1 < R2. Intuitively, whenever R1 < R2, J+(R1) ∩
J−(R2) comprises the region “between” R1 and R2.

Thesis. Acyclic Chance Invariance: Let M and M′ be spacetimes with no
closed causal curves. Let R1 and R2 be regions inM with R1 < R2. Finally,
let R′1 and R′2 be regions inM′ with R′1 < R′2, such that there is an isometry
Φ : J+(R1) ∩ J−(R2)→ J+(R′1) ∩ J−(R′2) with Φ(R1) = R′1 and Φ(R2) = R′2.27

Then,
urchM(P(R2)|Q(R1)) = urchM′(P(R′2)|Q(R′1)),

for any qualitative intrinsic properties Q and P.

Acyclic Chance Invariance is our first vestige of Chance Invariance.
The second vestige of Chance Invariance concerns the cyclic chances. As we’ve learned

in the previous section, they can’t be strictly identical to the acyclic chances. Still, they
shouldn’t just be arbitrary either. Instead, they should be derivable from the acyclic chances
in a principled way.

To sharpen this up, suppose you’re given some possible fundamental dynamical laws,
defining an urchance function urch. The laws’ acyclic chances is simply the collection of
all functions urchK(·|·) such that K is a spacetime without closed causal curves. The
laws’ cyclic chances are defined in exactly the same way, except that K now ranges over
all spacetimes with closed causal curves. Say that a theory of cyclic chances is dynamically
scrutable iff the cyclic chances can be inferred from the acyclic chances in a principled way.
A demand for dynamic scrutability is our second vestige of Chance Invariance. It and
Acyclic Chance Invariance are, I say, what remains of Chance Invariance when stripped of
its inconsistency.

Our work is now cut out for us: we must find a (1) consistent and (2) dynamically scrutable
theory of cyclic chances that (3) avoids trivialization. Chance Invariance satisfies (2) and

such that there is a future-directed [past-directed] causal curve starting in R and ending in p.
27If Φ exists, you might call (R1, R2) and (R′1, R′2) spatiotemporally congruous, generalizing the concept of

temporally congruous from Section 5.
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(3), but not (1). A consistent but arbitrary way of assigning cyclic chances satisfies (1)
and (3), but not (2). And Temporalism satisfies (1) and (2) but not (3)—it makes chances
conditional on CIRCLE’s geometry dynamically scrutable, but trivially so: the only allowed
background proposition is the entire history. We are looking for a theory which checks all
three boxes.

7 Spacetime Markov: What’s Inside Doesn’t Matter

As we saw in the introduction, when it comes to assessing the probability of a proposition,
some information can override, or screen off, other information. When it comes to chance,
what screens off what is partially determined by spacetime structure. For example, once
we know the current state of a radioactive atom and its local environment, any additional
information about the atom’s causal past, e.g. how long it has been in its excited state, has
no additional impact on the chance of its decaying within the next 10 seconds. Similarly,
provided the dynamics are local28 what happens at space-like separation also doesn’t
matter. In short, the atom’s current state screens off everything outside of its own causal
future.

Generalizing this yields the following proposal: a region’s immediate proper causal past
screens it off from everything outside of the region’s causal future. This is the spacetime-
theoretic analogue of the well-known “Causal Markov Condition”. In its generic form,
the Condition states that an event’s immediate causes screen it off from any of its non-
effects (cf. Hitchcock and Rédei 2021). The Causal Markov Condition and its predecessor,
Reichenbach’s “Common Cause Principle”, occupy important roles in debates about the
metaphysics of time (Reichenbach, 1956) and the nature of causation (Hitchcock and Rédei,
2021). Now, how might its spacetime-theoretic analogue bear on what the chances on
loops are? The idea is this: for some spacetime regions we can screen off whether or not
they’re part of a world with closed causal curves. As we shall see, this allows us to derive the
cyclic chances from the acyclic chances.

28 Throughout this essay, I restrict myself to local dynamics. However, at least some non-local theories can
be handled by my framework with mild modifications. For example, in the case of non-relativistic GRW—a
stochastic theory of non-relativistic quantum mechanics, due to Ghirardi, Rimini, and Weber (1986)—one
can maintain Parental Markov (see below) relative to Galilean spacetime structure (where any differentiable
curve intersecting each time slice at most once counts as “causal”), provided we restrict urchance to the
algebra generated by the maximal intrinsic states of time slices. Similarly, a theory involving superluminal
particles might posit a non-Minkowskian spacetime structure with an alternative notion of “causal”, relative
to which Parental Markov (see below) could still hold.
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7.1 Parental Markov

Let’s start by stating the spacetime analogue of the Causal Markov Condition more pre-
cisely.

Informally, we say that a spacetime region S “screens off” region R from T iff, condi-
tional on the complete state of S, urchance judges information about T as irrelevant to the
state of R. More formally:

Def. Screening Off: Where urch is the world’s urchance function,M its space-
time, and R, S, T any spacetime regions: S screens off R from T iff

urchM(Q1(R)|Q2(S) ∧Q3(T)) = urchM(Q1(R)|Q2(S)),

for any maximal intrinsic property Q2 and any intrinsic properties Q1 and Q3

such that Q2(S) ∧Q3(T) is possible according to urchM.29

Next we’ll define what it means to contain a region’s “immediate proper causal past”.
For any region A, denote A’s complement by A⊥. Let a thick parent of R be any (possibly
empty) region P, disjoint from R, which is such that every future-directed causal curve
which starts in (P ∪ R)⊥ and ends in R has a non-trivial subcurve30 in P before ever
intersecting R.31 Intuitively, this says that approaching any region from the past, you’ll
have to spend at least some time in its thick parents. Any thick parent contains a region’s
“immediate proper causal past”.

Why “thick” parent? One reason is that dynamical laws often require velocities or
other time derivatives as inputs for generating chance distributions.32 But many, including
myself, are inclined to endorse reductive views about time derivatives, such as the “at-at”

29On “maximal” and “possible according to urchM”: an intrinsic property of a spacetime region is maximal
iff it includes a “that’s all” clause. That is, where Q is a maximal intrinsic property, Q(R) says that every
particular matter of fact intrinsic to R is entailed by it. “Possible”: in our Popperian formalism, where u is
a primitively conditional probability function, a proposition A is impossible according to u iff u(¬A|A) = 1.
Where u is the set of primitively conditional probability functions induced by the fundamental dynamical
laws, call any function from pairs of propositions into functions on u an urchance candidate. Then, where u is
an urchance candidate, say that A is impossible according to u iff u(¬A|A) = 1 (where “=” is point-wise). This
explains the proviso that Q2(S)∧Q3(T) be possible according to urchM. For example, where S′ ⊆ S, we can
generically choose a possible intrinsic property Q2′ of S′ such that Q2′(S′)∧Q2(S) is impossible according to
urchM. This would have the consequence that S generically wouldn’t even screen off R from any of S’s own
subsets—that’s not a promising notion of “screening off”.

30A subcurve of c : I →M is any restriction of c to a subinterval of I. A continuous curve is non-trivial iff
its image consists of at least two points (which, in a continuous spacetime, is equivalent to its consisting of
continuum-many points).

31That is, where c : I →M, there are three disjoint subintervals, I1, I2, I3 ⊆ I with I1 < I2 < I3, such that
c[I1] ⊆ (R ∪ P)⊥, c[I2] ⊆ P is non-trivial, and c[I3] intersects R.

32Specifically, this is the case if the dynamical law involves second- or higher-order differential equations.
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Figure 3: A counterexample to Unrestricted Parental Markov.

theory of velocities (Russell, 1903, Ch. 54). In this case, the maximal intrinsic state of a
“thin” region doesn’t specify particle velocities in that regions. A parent’s thickness makes
it so that at least one-sided derivatives are generally reductively definable.

In keeping with standard physics terminology, say that a spacetime region A is a cause
of spacetime region B iff there is a future-directed causal curve starting in A and ending
in B; effect is the converse of cause. One possible idea for the spacetime analogue of the
Causal Markov Condition is this:

Hypothesis. Unrestricted Parental Markov: Any thick parent of a spacetime
region screens it off from any region not caused by it.

But Unrestricted Parental Markov is generically false. The problem is that, even in worlds
with no closed causal curves, some regions generically cause their own thick parents:
consider the disconnected region R (a union of two black ovals) in fig. 3. Conditioning on
its thick parent P (the union of the two grey regions, disjoint from R) doesn’t generally
screen off R from S, despite S’s being disjoint from R’s causal future.33

This suggests a weaker principle. Let a pure thick parent of R be any thick parent of R
not caused by R.

Thesis. Parental Markov: Any pure thick parent of a spacetime region screens
it off from any region not caused by it.

33For a concrete example, consider the world PLANE, inhabited by red and yellow particles, with the
following dynamics: whenever two particles of the same color collide, they fuse into a red particle; and
whenever two particles of different colors collide, they fuse into a yellow particle. Additionally, there are
orange particles, which cannot collide with anything. The orange particles have a short lifespan, at whose
end they decay, with equal chance, either into a yellow or a red particle. P’s lower part contains such an
orange particle (and nothing else), and P’s upper part a yellow particle (and nothing else). Suppose that the
spacetime distances are such that the orange particle is guaranteed to decay inside R. P’s state together with
S’s containing a red particle entails that R’s lower part contains a yellow particle. Yet P’s state together with
S’s containing a yellow particle entails that R’s lower part contains a red particle. So P’s state doesn’t screen
off R from S.
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This principle is plausibly true in any spacetime without closed causal curves and with a
local dynamics.

Alas, we are interested in spacetimes with closed causal curves. Here Parental Markov
is less useful: any region which intersects some closed causal curve without containing it
whole causes all of its own parents, and so lacks any pure thick parents. In a world like
CIRCLE, Parental Markov is therefore entirely vacuous. Even worse, in some loop worlds
Parental Markov is outright false—Appendix A.1 provides an example. We can’t use a
principle that’s at best vacuous and at worst false. So: back to the drawing board. Are
there other properties about “screening off” we can exploit?

7.2 Boundary Markov

Yes. A cognate principle is that a region is screened off by its thick boundaries. In Minkowski
spacetime, Parental Markov already entails that this is true for a fairly general class of
regions (as I prove in Appendix C). But in contrast to Parental Markov, the generalized
principle—which will be called Boundary Markov—remains non-trivial and plausibly true
for all regions, in worlds with loops and in worlds without, provided that the dynamics is
local. (In fact, satisfying Boundary Markov is plausibly part of what it is for a dynamics to
be local.)

Before stating the principle, let’s build an intuition for it. Consider again LINE (cf. sec-
tion 5). Suppose that you know the world’s urchance function. You then observe the
particle on two days, d9 and d11, learning BLUE(d9) and RED(d11), respectively. Suppose
you’d now like to calculate the chances of events outside of d10. For this, is it worth
examining d10, to establish if BLUE(d10) or RED(d10)? No: as far as the chances of events
outside of d10 are concerned, d10’s state doesn’t matter given d9’s and d11’s states. Any
information d10 may carry about events outside of it is screened off by their union.

The union d9 ∪ d10 ∪ d11 contains what I’ll call a thick neighborhood of d10, and d9 ∪ d11

is a thick boundary of d10. More generally, a thick neighborhood of a region R is any open
superset N of R such that every continuous curve starting in N⊥ and ending in R has a
non-trivial subcurve in N\R before ever intersecting R.34 Intuitively, a thick neighborhood
is like a city plus its suburbs: coming from the outside, you have to spend some time in the
’burbs to get to the city. Meanwhile, a thick boundary of R is any region B disjoint from R
such that R∪ B contains a thick neighborhood of R. In our analogy, the suburbs themselves
are a thick boundary of the city, as is any region that contains the suburbs but no part of

34Formally: where c : [0, 1] → M, the interval [0, 1] can be partitioned into subintervals I0, I1, I2 with
I0 < I1 < I2, such that c[I0] ⊆ N⊥, c[I1] ⊆ N\R is non-trivial, and c[I2] intersects R.
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Figure 4: B is a thick boundary of R.

the city. See e.g. fig. 4, where B is a thick boundary of R.35 As I prove in Appendix B, in
any spacetime with the same topology as Rn, N is a thick neighborhood of R iff N is an
open superset of R’s closure.

We are ready to state Boundary Markov:36

Thesis. Boundary Markov: Any thick boundary of a spacetime region screens
it off from any region disjoint from it.

35It’s worth noting some edge cases: the entire spacetime has the empty set as a thick boundary (“the
universe doesn’t have suburbs”), and the empty set has every region as a thick boundary (“everything is a
suburb of the empty set”).

36Besides accommodating reductive accounts of derivatives, a boundary’s thickness plays a second role.
Even for non-reductivists, a thin boundary generally wouldn’t screen off its inside from its outside. (This
contrasts with parental thickness: to my knowledge, given instantaneous derivatives, thin parents do screen
off a region from its non-effects.) To see this, consider again PLANE (cf. fn. 33), now with the following setup:

where ∂R is just the ordinary topological (“thin”) boundary. Conditioning on the complete state of ∂R doesn’t
screen off R’s inside from the outside. Let the distances be such that the orange particle on ∂R is guaranteed
to decay inside R. Conditional on the state of ∂R, with its yellow particle at point p, the probability that R
contains a red particle is then equal to the probability, conditional on the state of ∂R, that there is a yellow
particle on course to collide with it at p. (Recall that the only way for a red particle to transform into a yellow
one is to collide with another yellow particle.) Since ∂R contains little information about the universe’s initial
conditions, this probability is highly imprecise. (And if it was precise, it would be near zero—it would be
more likely that the orange particle decayed into a yellow particle to begin with.) But conditional on the
existence of a yellow particle on collision course with p, the chance rises to 1. So ∂R doesn’t screen off R
from the outside. Meanwhile, any thick boundary would automatically include either the information about
the inside particle’s color or the information about the outside particle’s color (or both), and hence screen
them off each other.
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Appendix C proves that, in Minkowski spacetime, given plausible conglomerability and
locality assumptions for urchance, Parental Markov already entails a certain restriction of
Boundary Markov.

Every region has a thick boundary (indeed often infinitely many), even in worlds with
closed causal curves. Moreover, there are plausibly no locality-respecting counterexample
to Boundary Markov. (As I said, Boundary Markov may indeed be partially constitutive of
locality.) Appendix A.2 explicitly demonstrates that in the cyclic case in which Parental
Markov is false, Boundary Markov is still true. Henceforth I’ll assume that, necessarily, if
the dynamics is local, Boundary Markov is true.

7.3 Strong Boundary Markov

We are almost there. So far we’ve understood screening off a region as screening off
its matter content. But plausibly not only matter content can be screened off, but also a
region’s internal geometry. This insight holds the key to our theory of chances on loops. For
whenever a region intersects all spacetime loops, the existence of spacetime loops partially
depends on the region’s internal geometry. But then screening off the region’s internal
geometry also screens off whether there are any spacetime loops. This gives us the desired
connection between cyclic and acyclic chances.

To first get a better feel for the strenghtened notion of screening off, consider LINE.
Suppose you’ve studied the world’s geometry everywhere outside of d10, but haven’t
examined d10 at all; you’re even unsure about aspects of d10’s internal geometry—say its
length, or whether it is connected, etc. When calculating the chance of events in d10’s
complement, does your ignorance matter? No, I say, because d9 and d11 screen off d10’s
internal geometry. Where LINE∗ (or L∗ for short) is a world just like LINE except that (say)
d10 isn’t connected, and where A is a proposition about the complement of d10, we get the
following identity:

urchL(A|BLUE(d9) ∧ RED(d11)) = urchL∗(A|BLUE(d9) ∧ RED(d11)).

(Where, as always, urchL∗ denotes the result of conditioning urch on a complete description
of L∗’s geometry.)

The previous definition of “screening off” compares urchance functions on the same
spacetime geometries. One way to define the stronger notion instead compares the original
spacetime with the result of deleting the screened-off region. For any spacetimeM, let
M\X denote the result of deleting region X fromM.37 Moreover, let urchM\X be the

37More precisely, we’ll first define the deletion operation for manifolds. Let M = (Ω,A, g) be a Lorentzian
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result of conditioning urch on a complete geometrical description ofM\X. (This descrip-
tion includes a “that’s all” clause—cf. fn. 19—i.e. a proviso thatM\X is all of spacetime.
Accordingly, urchM\X is not the result of conditioning urch on an incomplete description
that’s true atM, but instead the result of conditioning urch on a complete description that’s
false atM.)

Def. Strong Screening Off: Where urch is the world’s urchance function,M
the spacetime, and R, S, T are any spacetime regions: S strongly screens off R
from T iff

urchM(Q1(R)|Q2(S) ∧Q3(T)) = urchM\T(Q1(R)|Q2(S)),

for any maximal intrinsic property Q2 and any intrinsic properties Q1 and Q3

such that Q2(S) ∧Q3(T) is possible according to urchM.38

manifold with topological space Ω, atlas A, and (pseudo-)metric field g. For X ⊆ Ω, define M\X :=
(Ω\X,A|Ω\X , g|Ω\X), where A|Ω\X := {φ|U\X |(φ : U → Rn) ∈ A} is the set of all restrictions of coordinate
charts to their domains minus X. (When X has non-differentiable boundary, (Ω\X,A|Ω\X) will generally be
neither a manifold nor manifold-with-boundary. But no matter: g|Ω\X retains all the metric structure we
need to make sense of the dynamics.) Let nowM be a spacetime represented by M. Then we defineM\X
to be the part ofM represented (under the same representation) by M\X.

38To see how Strong Boundary Markov entails that thick boundaries screen off a region’s internal geometry,
consider the operation of adding a region to a spacetime. I’ll define this precisely at the end of the footnote; for
now, simply note that ifM+ X is a result of adding region X toM, the operation ·\X (fn. 37) reverses that
addition: (M+ X)\X =M. Let now B be a thick boundary of R inM, and let A be a proposition purely
about (R ∪ B)⊥. LetM∗ := (M\R) + R∗ be the result of adding some region R∗ toM\R such that B is also
a thick boundary of R∗ inM∗. (Think ofM∗ as resulting from “replacing” R by R∗ inM in some way.) By
the above, we haveM∗\R∗ = ((M\R) + R∗)\R∗ =M\R. Moreover, by Strong Boundary Markov,

urchM∗(A|Q1(B) ∧Q2(R∗)) = urchM∗\R∗(A|Q1(B)), and

urchM(A|Q1(B) ∧Q3(R)) = urchM\R(A|Q1(B))

(where Q1 is a maximal intrinsic property and Q2 and Q3 are intrinsic properties such that Q1(B)∧Q2(R) is
possible according to urchM and Q1(B)∧Q3(R∗) is possible according to urchM∗ ). So,

urchM(A|Q1(B) ∧Q2(R)) = urchM∗(A|Q1(B) ∧Q3(R∗)).

In other words, B screens off A from anything in B, including B’s internal geometry.
Now, to define adding, first define it for manifold-like structures. Specifically, let M = (Ω,A, g) be the

result of deleting a (possibly empty) region from a Lorentzian manifold. Then, for any X disjoint from Ω,
M + X = (Ω ∪ X,AΩ∪X , gΩ∪X) is a result of adding X to M iff

(i) AΩ∪X is a set of charts whose domains form an open (relative to some chosen topology on Ω ∪ X,
inducing Ω’s topology) cover of Ω ∪ X,

(ii) AΩ∪X |Ω = A (see fn. 37 for the definition of |· on sets of charts),

(iii) all charts in AΩ∪X satisfy the usual smoothness condition (i.e., all transition maps are smooth),

(iv) gΩ∪X is an extension of g to Ω ∪ X smooth relative to AΩ∪X .

The non-uniqueness of M + X is reflected in (i), specifically in the choice of a topology on Ω ∪ X and the
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Figure 5: A sketch of SMALL CIRCLE. Each τi is a half-open interval (closed toward the
past, open toward the future).

Replacing “screens off” in Boundary Markov by “strongly screens off” yields

Thesis. Strong Boundary Markov: Any thick boundary of a spacetime region
strongly screens it off from any region disjoint from it.

I think that, accepting Boundary Markov, you should also accept Strong Boundary Markov.
Intrinsic geometrical information isn’t privileged over information about matter content:
both are screened off by thick boundaries.

8 Cutting Loops

Our theory of chances on loops is now complete: it consists of Strong Boundary Markov
and Acyclic Chance Invariance. Let us put them to work.

To start simply, consider SMALL CIRCLE (or SC for short), which is just like CIRCLE

except only three days long. We’d like to calculate urchSC(RED(τ1)|RED(τ0))—the chance
of the particle’s being red at τ0 conditional on its being red the day prior. To do so, partition
τ0 into any three non-trivial intervals {τ0

0 , τ1
0 , τ2

0 } with τ0
0 < τ1

0 < τ2
0 —see fig. 5. Note that

τ0
0 ∪ τ2

0 is a thick boundary of τ1
0 , and hence, given Strong Boundary Markov, strongly

screens it off from τ1.

charts (if any) whose domains overlap both Ω and X—intuitively, these two choices determine how X is
added to M. Extending the deletion operation (fn. 37) to M + X in the obvious way, we have, by conditions
(ii) and (iv), (M + X)\X = ((Ω ∪ X)\X, (AΩ∪X)|(Ω∪X)\X, gΩ∪X |(Ω∪X)\X) = (Ω,A, g) = M, as desired.
Finally, ifM is a spacetime represented by M, a result of adding X toM is any mereological fusion ofMwith a
spacetime region such that the result is represented (under the same representation relation) by some M + X.
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Now, whether the spacetime is a cycle partially depends on τ1
0 ’s internal geometry. In

particular, if τ1
0 has a “hole”—i.e., if it’s empty or its ends otherwise don’t connect—the

spacetime isn’t a cycle. For concreteness, consider the possibility where τ1
0 is empty. The

resulting spacetime is SMALL LINE (or SL for short), as follows:39

Strong Boundary Markov now lets us express the chances on SMALL CIRCLE in terms of
the chances on SMALL LINE. But given Acyclic Chance Invariance, we already know the
chances on SMALL LINE: they are based on the same transition chances as those on LINE

(cf. Section 5). And now we are done: we’ve derived the cyclic chances from the acyclic
chances.

Let’s do this slowly. Let [REDi/REDm/RED f ] be the property of containing a red
particle whose clock initially reads [0 : 00/t1

0/t2
0] and grows in proportion to the time

passed—where t1
0 is τ1

0 ’s starting time and t2
0 is τ2

0 ’s starting time. According to Acyclic
Chance Invariance, the transition chances in SMALL LINE directly follow from those in
LINE:40

urchSL(RED(τ1)|RED f (τ
2
0 )) = 0.8,

urchSL(GREEN(τ1)|RED f (τ
2
0 )) = 0.2,

...

urchSL(REDi(τ
0
0 )|RED(τ2)) = 0.8,

urchSL(GREENi(τ
0
0 )|RED(τ2)) = 0.2,

etc.

(12)

Strong Boundary Markov relates the urchance at SMALL CIRCLE to the urchance at SMALL

LINE, as follows:

urchSC(RED(τ1)|RED(τ0)) = urchSC(RED(τ1)|REDi(τ
0
0 ) ∧ RED f (τ

2
0 ) ∧ REDm(τ

1
0 ))

= urchSL(RED(τ1)|REDi(τ
0
0 ) ∧ RED f (τ

2
0 )). (13)

where the first line follows because, given a complete description of SMALL CIRCLE’s

39Mathematically, this is a manifold with boundary.
40Using the official definition of Acyclic Chance Invariance, the relevant isometries are obvious: for

example, for the first two lines in eqs. 12, any isometry from J+(τ2
0 ) ∩ J−(τ1) = τ2

0 ∪ τ1 into a subset of LINE
will do; mutatis mutandis for the other lines.
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geometry, RED(τ0) is logically equivalent to REDi(τ
0
0 ) ∧ RED f (τ

2
0 ) ∧ REDm(τ1

0 ), and the
second line follows by Strong Boundary Markov.

Eq. 13 gives the desired connection between cyclic and acyclic chances. We can easily
derive its right-hand side, urchSL(A|REDi(τ

0
0 ) ∧ RED f (τ

2
0 )), from eqs. 12; the result is

64/65 ≈ 0.98.41 So, by eq. 13,

41Proof : Using the multiplicative axiom twice,

urchSL(RED(τ1)|REDi(τ
0
0 ) ∧ RED f (τ

2
0 )) · urchSL(REDi(τ

0
0 )|RED f (τ

2
0 )) =

= urchSL(RED(τ1) ∧ REDi(τ
0
0 )|RED f (τ

2
0 ))

= urchSL(REDi(τ
0
0 )|RED(τ1) ∧ RED f (τ

2
0 )) · urchSL(RED(τ1)|RED f (τ

2
0 )).

Provided that urchSL(REDi(τ
0
0 )|RED f (τ

2
0 )) > 0—which we’ll show below—we can rewrite this:

urchSL(RED(τ1)|REDi(τ
0
0 ) ∧ RED f (τ

2
0 )) =

=
urchSL(REDi(τ

0
0 )|RED(τ1) ∧ RED f (τ

2
0 )) · urchSL(RED(τ1)|RED f (τ

2
0 ))

urchSL(REDi(τ
0
0 )|RED f (τ

2
0 ))

. (14)

Let’s evaluate each part of the quotient separately. Note that, since SMALL LINE is acyclic, Parental Markov is
in good standing there. The first factor in the numerator:

urchSL(REDi(τ
0
0 )|RED(τ1) ∧ RED f (τ

2
0 )) =

= urchSL(REDi(τ
0
0 )|RED(τ1)) =

= urchSL(REDi(τ
0
0 )|RED(τ2) ∧ RED(τ1)) · urchSL(RED(τ2)|RED(τ1)) =

= urchSL(REDi(τ
0
0 )|RED(τ2)) · urchSL(RED(τ2)|RED(τ1)) =

= 0.82,

where the first and third equalities follow from Parental Markov for SMALL LINE, the second equality follows
from the probability laws plus the fact that only RED(τ2) is nomically compatible with RED(τ1)∧REDi(τ

0
0 ),

and the final equality follows from the transition chances (eqs. 12) for SMALL LINE. The numerator’s second
factor follows immediately from the transition chances:

urchSL(RED(τ1)|RED f (τ
2
0 )) = 0.8.

Finally, to calculate the denominator, observe that

urchSL(REDi(τ
0
0 )|RED f (τ

2
0 )) =

= ∑
π∈{RED,GREEN}

urchSL(REDi(τ
0
0 )|π(τ1) ∧ RED f (τ

2
0 )) · urchSL(π(τ1)|RED f (τ

2
0 )),

where the second line follows because LINE’s dynamics disallow immediate RED-to-BLUE transitions. For
π = RED, the right-hand side’s summand is just the numerator, whose value we’ve just calculated: 0.83. (As
promised, this also proves that the denominator is positive.) For π = GREEN, we perform exactly analogous
calculations. Noting that BLUE(τ2) is the only option for τ2 compatible with GREEN(τ1) and REDi(τ

0
0 ), the

right-hand side’s summand then comes out to 0.22 · 0.2 = 0.23. Plugging everything into eq. 14,

urchSL(RED(τ1)|REDi(τ
0
0 ) ∧ RED f (τ

2
0 )) =

0.83

0.83 + 0.23 =
64
65
≈ 0.98. �
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urchSC(RED(τ1)|RED(τ0)) =
64
65
≈ 0.98. (15)

This is the cyclic transition chance we were looking for. Contra Chance Invariance, the
chance for the particle to remain red is higher in SMALL CIRCLE than the usual 0.8.

We’ve derived this result from entirely general principles about chance. It’s also worth
noting that it makes sense pretheoretically. Contra Chance Invariance, we should really
have expected that

urchSC(RED(τ1)|RED(τ0)) > 0.8. (16)

For, intuitively, RED(τ0) doubly supports RED(τ1): the latter is not only a likely effect of
RED(τ0), but also a likely cause. Going from RED(τ1) to RED(τ0) involves transitioning
from RED(τ1) to RED(τ2) to RED(τ0)—two “likely” transitions. By contrast, going from
GREEN(τ1) to RED(τ0) involves two “unlikely” transitions: GREEN(τ1) to BLUE(τ2) to
RED(τ0). So, pretheoretically, RED(τ0) should favor RED(τ1) both because it preferentially
causes it and because it’s preferentially caused by it. Eq. 13 captures this “double support”
intuition. It says that the result of conditioning the urchance on today’s particle being red
equals (as far as events outside of τ0 are concerned) the result of conditioning the acyclic
urchance function on today’s particle and the particle three days from now being red—thus
doubly supporting tomorrow’s redness.

We can also understand eq. 13 in terms of “unraveling” the cyclic spacetime. Consider
SL+, an extension of SMALL LINE obtained by adding42 a copy of τ0

0 ∪ τ1
0 to the beginning

of τ2
0 and a copy of τ1

0 ∪ τ2
0 ∪ τ1 ∪ τ2 to the end of τ0

0 in the obvious ways. The result is
a concatenation of two copies of SMALL LINE. Denoting parts of the later copy with +

superscripts, we can sketch SL+ as follows (with the original SL highlighted):

Now, SL+ is a result of “unraveling” the SMALL CIRCLE twice—more formally, it is a
double cover of SMALL CIRCLE. Since τ2

0∪τ0
0 is a thick boundary of τ1 ∪ τ2 in SL+, by Strong

Boundary Markov, it follows that43

urchSL(RED(τ1)|RED f (τ
2
0 ) ∧ REDi(τ

0
0 )) = urchSL+(RED(τ1)|RED(τ0) ∧ RED(τ+

0 )).

42See fn. 38 for a rigorous definition of “adding”.
43To see this rigorously: let REDn be the property of being a concatenation of n 24h intervals the first

of which satisfies RED. Given complete geometric descriptions of SL or of SL+ (each entailing that τ2 is a
24h interval following τ1), RED(τ1) is equivalent to RED2(τ1 ∪ τ2). Similarly, given a complete geometric
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So, by eq. 13,

urchSC(RED(τ1)|RED(τ0)) = urchSL+(RED(τ1)|RED(τ0) ∧ RED(τ+
0 )).

Thus, our account implies that the transition chances for RED(τ0) on CIRCLE can also be
obtained by unraveling the spacetime twice, into a double cover, and then conditioning
on the proposition that both copies of τ0 in the cover are red.

Our theory of chances on loops ticks all three boxes: since they’re fully derived from
the acyclic chances, the conditional chances in SMALL CIRCLE are dynamically scrutable.
As eq. 15 shows, the approach also avoids trivialization. And if (as I claim) locality entails
Strong Boundary Markov, the conjunction of Strong Boundary Markov and Acyclic Chance
Invariance is (ipso facto) consistent with any local dynamics whose chance prescriptions
are invariant across acyclic worlds—which arguably includes any plausible local dynamics.

There is a hidden fourth benefit to our account. Sometimes it salvages Chance Invari-
ance in the short term, as it were, asymptotically. In the original CIRCLE case, with a period of
100 billion years, the short-term cyclic transition chances are essentially indistinguishable
from the acyclic transition chances (the difference between urchC(GREEN(τ1)|RED(τ0))

and 0.2 is smaller than 0.81012
). More generally, unless the chance to switch color in the

acyclic case is extremely close to 0 or 1, the short-term cyclic transition chances converge
extremely quickly to the acyclic transition chances as the loop length increases. This makes
sense intuitively: knowing the particle’s color in the far future provides little evidence
about the near-term colors.44 More generally, in a cyclic spacetime, our approach asymptot-

description of SL+, RED(τ+
0 ) is equivalent to RED3(τ+

0 ∪ τ+
1 ∪ τ+

2 ). We thus have

urchSL+(RED(τ1)|RED(τ0) ∧ RED(τ+
0 )) = urchSL+(RED2(τ1 ∪ τ2)|RED(τ0) ∧ RED3(τ+

0 ∪ τ+
1 ∪ τ+

2 ))

SBM
= urchSL(RED2(τ1 ∪ τ2)|RED f (τ

2
0 ) ∧ REDi(τ

0
0 ))

= urchSL(REDτ1|RED f (τ
2
0 ) ∧ REDi(τ

0
0 )),

where the second line follows by Strong Boundary Markov because RED2 and RED3 are (non-maximal)
intrinsic properties of τ1 ∪ τ2 and τ+

0 ∪ τ+
1 ∪ τ+

2 , respectively, RED(τ0) is equivalent to a conjunction
φ(τ0\τ2

0 ) ∧ RED f (τ
2
0 ) with φ intrinsic to τ0\τ2

0 , and RED3(τ+
0 ∪ τ+

1 ∪ τ+
2 ) is equivalent to a conjunction

ψ((τ+
0 ∪ τ+

1 ∪ τ+
2 )\τ0

0 ) ∧ REDi(τ
0
0 ) with ψ intrinsic to τ+

0 ∪ τ+
1 ∪ τ+

2 )\τ0
0 . �

44 More formally, where q ∈ [0, 1) is the acyclic chance for a particle to switch color during the next
transition and l is the loop length, we obtain (if bl/3c = 0, the numerator sum is set to 0)

urchL(GREEN(τ1)|RED(τ0) ∧ RED(τ−1)) =

bl/3c
∑

n=1
(1− q)l−3nq3n( l−1

3n−1)

bl/3c
∑

n=0
(1− q)l−3nq3n( l

3n)

(17)

For increasing l, this converges to q extremely quickly.
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ically ensures short-term Chance Invariance whenever, according to the acyclic dynamics,
far-future states are increasingly probabilistically independent of near-future states.45

9 Saving Grandpa

Let’s apply our theory to the stochastic “grandfather paradox” from the introduction.
For concreteness, let the spacetimeM be Minkowskian except for one topological quirk,
a wormhole. We can represent the wormhole with two duplicate (three-dimensional)
bounded space-like surfaces, w1 and w2: every future-directed causal curve intersecting
w1 immediately exits at w2 (without intersecting w2), from where it continues future-ward,
and every future-directed causal curve intersecting w2 immediately exits at w1 (without
intersecting w1), from where it continues future-ward.46 See figure 6, which includes an
example trajectory through the wormhole.47

Figure 6 also indicates six other spacetime regions: P is the region where the poisoning
occurs; A1 (A2) is the region where you (would) administer the first (second) antidote,
with A1 additionally tri-partitioned into A−1 , A◦1, and A+

1 ; H1 (H2) is the region where
the first (second) antidote takes (would take) effect; G is the region where grandpa has
children, one of whom bears you and your sibling, who then travel through the wormhole
at the end of G. (The regions aren’t drawn to scale.)

To keep things simple, consider only finitely many possible maximal intrinsic states

45To see this: suppose we’re given a cyclic spacetime C. Let τ be a region in C bounded by two time-slices.
As before, we partition τ into three parts τ0, τ1, τ2. (In higher-dimensional cyclic spacetimes, τ, τ0, τ1, τ2 are
all hypercuboids.) Let L := C\τ1. The longer the return time in C, the greater the forward distance from τ2

to τ0 in L. Let τ+ be a time in τ2’s near-term future. Given a long return time and approximate probabilistic
independence of far-future from near-future states, we have

urchL(Q(τ+)|P(τ2) ∧ P(τ0)) ≈ urchL(Q(τ+)|P(τ2))

for any possible maximal intrinsic property P of τ—where “P(τi)” denotes the strongest proposition entirely
about τ2 entailed by P(τ)—and any intrinsic property Q. Hence, by Strong Boundary Markov,

urchC(Q(τ+)|P(τ)) = urchC(Q(τ+)|P(τ2) ∧ P(τ1) ∧ P(τ0))

SBM
= urchL(Q(τ+)|P(τ2) ∧ P(τ0))

≈ urchL(Q(τ+)|P(τ2)).

But urchL(Q(τ+)|P(τ2)) is just the ordinary acyclic transition chance from P(τ) to Q(τ+). �
46To keep derivatives everywhere well-defined, w1 and w2’s (two-dimensional) boundaries are deleted.
47The choice of w1 and w2 is non-unique: any other pair of duplicate bounded space-like surfaces with

the same boundaries as w1 and w2 generates the same wormhole. Arguably, “wormhole” is therefore most
naturally identified with the union of w1’s and w2’s domains of dependence. But to keep things simple, I’ll
keep framing things in terms of w1 and w2 specifically.
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Figure 6: A sketch ofM, the spacetime in the grandfather case.

for each region.48 Associating each state with a natural number, we can write property
assignments to a region R conveniently as R = n. In the following all properties are to be
read as intrinsic to the respective region.49 Let a bracketed expression (φ)i indicate that “φ”
is to be added for the values i.

• P = 0, 1: infant (not)0 poisoned in P

• A−1 = 0, 1: in A−1 , infant (healthy)0 (sick)1 and antidote 1 (not)0 about to be adminis-
tered

• A◦1 = 0, 1: in A◦1 , infant (healthy)0 (sick)1and antidote 1 (not)0 being administered

• A+
1 = 0, 1: in A+

1 , infant (healthy)0 (sick)1 and antidote 1 (not)0 just administered

• A1 = 0, 1 : (A−1 = A◦1 = A+
1 = 0)0 (A−1 = A◦1 = A+

1 = 1)1

• H1 = 0, 1, 2: antidote 1 (not)0,1 taking effect on (healthy)0 (sick)1,2 infant in H1
50

• A2 = 0, 1: in A2, infant (healthy)0 (sick)1 and antidote 2 (not)0 administered

• H2 = 0, 1, 2: antidote 2 (not)0,1 taking effect on (healthy)0 (sick)1,2 infant in H2

48We could consider infinitely many possible states for each region, and then condition on their disjunctions,
using Regional Conglomerability (see Appendix C).

49So, for example: “infant” means something like having the physiology typical of a neonate, rather than
having been born some time ago; “antidote about to be administered” means something like your standing ready
with the antidote, with the intention to administer it, etc; and “antidote just administered” means the bottle’s being
lifted from the infant’s mouth, while the antidote is entering the infant’s body, etc. For readability I’ll use the shorter
expressions.

50An antidote can, of course, only take effect on a sick person.
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Figure 7: The result of deleting A◦1 fromM.

• G = 0, 1: in G, infant (not)0 alive, and (not)0 eventually growing up to have two
grandchildren

One salient interpretation of “chance, upon administration, of the first antidote’s working”
is urchM(H1 = 2|A1 = 1)—the urchance, inM, of the first antidote’s working conditional
on administration in A1. To calculate this, first note that A+

1 ∪ A−1 is a thick boundary of
A◦1 (cf. fig. 6). Thus considerM′ :=M\A◦1, the result of deleting A◦1 fromM, sketched
in figure 7. Since, given a complete geometric description ofM, A1 = 1 is necessarily
equivalent to A−1 = A◦1 = A+

1 = 1, we obtain, by Strong Boundary Markov:

urchM(H1 = 2|A1 = 1) = urchM(H1 = 2|A−1 = A◦1 = A+
1 = 1)

SBM
= urchM′(H1 = 2|A−1 = A+

1 = 1). (18)

Since A◦1 intersects all closed causal curves inM,M′ contains no closed causal curves at
all. So we can derive the right-hand side of eq. 18 from the acyclic chances.

To do this, let’s assume for simplicity that the antidote’s actions are the only indeter-
ministic processes inM′. In worlds without closed causal curves, there’s a 50% chance
that a given antidote works. Hence:

urchM′(H1 = i|A+
1 = 1) = urchM′(H2 = i|A2 = 1) = 0.5. (19)

To pin down the rest of the acyclic dynamics, note thatM′ contains two disconnected
infant spacetime worms: one starting in P (at birth) and ending at A−1 ’s future border, the
other starting at A+

1 ’s past border and ending somewhere in G (as the infant grows into
an adolescent). These spacetime worms are disconnected because grandfather himself
never travels through the wormhole. Call the spacetime worm from P to A−1 ’s future
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border young infant, and the spacetime worm from A+
1 ’s past border to G older infant.

For any propositions A, B, let A ⇒ B denote that, deterministically, if A, then B.51 (For
convenience, I’ll often suppress explicit mention of “deterministically” in the following,
writing “...iff...” instead of “deterministically, ...iff...”.) A⇔ B denotes A⇒ B ∧ B⇒ A.

(a) H1 = 0⇔ A+
1 = 0: older infant is healthy coming into H1 iff he is healthy in A+

1

(b) A2 = 1⇔ H1 = 1: an antidote is administered in A2 iff older infant is still sick at the
end of H1

(c) H2 = 0⇔ A2 = 0 : older infant is healthy coming into H2 iff he is already healthy in
A2

(d) G = 1⇔ H2 = 0∨ H2 = 2: older infant grows up to become a grandfather in G iff
either he is healthy going into H2, or he is sick going into H2 but antidote 2 works

(e) P = 1⇔ G = 1: young infant is poisoned in P iff older infant in G grows up to be a
grandfather52

(f) A−1 = 1 ⇔ P = 1: antidote about to be administered in A−1 iff young infant is
poisoned in P

By eqs. (d), (e) and (f) we have A−1 = 1 ⇔ H2 = 0 ∨ H2 = 2—an antidote is about to be
administered to the young infant in A−1 iff the older infant survives in H2 (either by being
already healthy at the start of H2 or by being healed in H2). Meanwhile, from (a), (b), and
(c) we have A+

1 = 1∧ H2 = 0⇔ A+
1 = 1∧ H1 = 2—if an antidote has entered the infant’s

stomach in A+
1 , then he is healthy at the start of H2 iff the first antidote works in H1. Those

two equivalences jointly entail the following:

A−1 = A+
1 = 1⇔ (H1 = 2∨ H2 = 2) ∧ A+

1 = 1,

i.e., if an antidote has just been administered to the older infant in A+
1 , then [an antidote

is about to be administered to the young infant in A−1 iff at least one antidote works].
Plugging this into the right-hand side of eq. 18, we obtain the following:

urchM(H1 = 2|A1 = 1) = urchM′(H1 = 2|A+
1 = 1∧ (H1 = 2∨ H2 = 2)). (20)

51In our urchance formalism, pdeterministically, A given Bq is equivalent to purch(A|B ∧Q) ≡ 1 for all
propositions Qq.

52This holds because one of the older infant’s grandchildren poisons the young infant and, by assumption,
nobody else possibly does.
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That is, the probability, inM, that the first antidote is effective conditional on its adminis-
tration equals the probability, inM′, that the first antidote is effective conditional on its
administration and at least one of the two antidotes’ working.

It’s intuitively clear that the latter probability is greater than 1/2. That’s because the
guarantee that one of the two antidotes works raises the chance of each one’s working—it
excludes the possibility that both fail. More precisely, we find that53

urchM′(H1 = 2|A+
1 = 1∧ (H1 = 2∨ H2 = 2)) =

1/2
3/4

=
2
3

. (22)

So, by eq. 20,

urchM(H1 = 2|A1 = 1) =
2
3
>

1
2

.

Equally, the fact that one of the two antidotes works raises the chance of the second one’s
working: an analogous calculation yields urchM(H2 = 2|A1 = 1) = 1/3, higher than the
usual 1/4 (note that the second antidote is administered only if the first fails). We also
obtain urchM(H2 = 2|H2 = 1) = 1—given that antidote 1 fails, antidote 2 must work. In
the presence of spacetime loops, chances differ in non-trivial but scrutable ways.

Our two scenarios provide us with a general recipe for deriving chances on loops.

General Recipe:

1. Given a spacetimeM with closed causal curves, identify a region R in-
tersecting all closed causal curves. Let QR a qualitative intrinsic state of
R.

2. Identify a thick boundary B of R. Let QB be its complete intrinsic state.

3. Using Acyclic Chance Invariance, calculate, for any propositions X and Y

53Proof: By the multiplicative axiom,

urchM′(H1 = 2|A+
1 = 1∧ (H1 = 2∨ H2 = 2)) =

urchM′(H1 = 2|A+
1 = 1)

urchM′(H1 = 2∨ H2 = 2|A+
1 = 1)

, (21)

provided the denominator isn’t zero. Eq. 19 gives us urchM′(H1 = 2|A+
1 = 1) = 1/2. Moreover, we obtain

urchM′(H2 = 2|A+
1 = 1) = 1/4 via the usual methods (the second antidote is administered only if the first

one fails, and, if it is administered, has a 1/2 chance of healing the poisoning—all of this is encoded in eq. 19,
(a), (b), and (c)). Finally, H1 = 2 and H2 = 2 are mutually exclusive (because, again, the second antidote is
administered only if the first antidote fails). Plugging this all into eq. 21, we obtain

urchM′(H1 = 2|A+
1 = 1∧ (H1 = 2∨ H2 = 2)) = (1/2)/(3/4) = 2/3. �
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entirely aboutM\R,

urchM\R(X|Y ∧QB(B)).

4. By Strong Boundary Markov, this equals

urchM(X|Y ∧QR(R) ∧QB(B)).

This way, Strong Boundary Markov and Acyclic Chance Invariance determine certain
conditional chances. A natural follow-up question is whether those conditional chances
determine other chances too. The answer is a resounding Yes. In cyclic spacetimes, they
determine precise unconditional chances for virtually all propositions: we generically obtain
a full “probability map of the universe”.54 Meanwhile, where a wormhole is embedded
into a larger spacetime, we obtain precise chance distributions over states of the loop
region—including over what emerges from the wormhole—conditional on the state of the
world prior to the loop region. The next section explains.

10 Marginal Chances

Several people have suggested to me in conversation that, generically, there are no well-
defined chances of what comes out of a future wormhole, conditional only on the state of
the world prior to it. In the same vein, one might think that there is no privileged way of
assigning marginal (i.e., unconditional) chances over the states of a cyclic universe.

I once believed both things too. Certainly in acyclic worlds, like Minkowski spacetime,
the transition chances alone generically don’t fix marginal chance distributions over the
states of the world; additionally, one requires a marginal chance distribution over the
universe’s possible initial conditions.55

But things are different with cyclic worlds. A specification of all transition chances
generically fixes even a marginal chance distribution over the possible states of a cyclic
world. Intuitively, the reason for this is that cyclic worlds have one “extra” transition
compared to their linear counterparts: their “ends” also connect. This extra transition
generically imposes additional constraints on the marginal distribution over the loop,

54Cf. Loewer (2019). Of course, in contrast to the Mentaculus, our probability maps for cyclic spacetimes
don’t require anything like a Past Hypothesis—everything is fixed by the dynamics alone.

55Some derive such a distribution from statistical mechanical considerations (e.g. Albert, 2000; Loewer,
2019). This abandons the idea that the urchance function is determined by the dynamical laws alone. In any
case, the considerations cannot apply to closed causal curves, which lack unidirectional entropic arrows.
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enough to fix it uniquely.56

To see this, consider a generalized version of CIRCLE, where the loop is n days round-
trip and there are k possible particle colors, represented by natural numbers. (In the
original CIRCLE case, n ≈ 5.5 · 1012, and k = 3.) The probability axioms imply that, for
every i = 1, ..., n and j = 1, ..., k (where we identify a 0 in an index with n):57

urchC(τi = j) =
k

∑
l=1

urchC(τi = j|τi−1 = l) · urchC(τi−1 = l). (23)

From the acyclic dynamics, our account obtains all cyclic transition probabilities, urchC(τi =

j|τi−1 = l). Hence eq. 23 yields n · k equations in n · k unknowns. Since we also know that,
for every i = 1, ..., n,

k

∑
j=1

urchC(τi = j) = 1, (24)

we can eliminate n equations and n unknowns from this system, leaving us with n · (k− 1)
equations in n · (k− 1) unknowns. In Appendix D, we see that these equations generically
are linearly independent and have a unique solution.

Solving the system (see eq. 34 in the Appendix—I’ll skip the calculation here) for
SMALL CIRCLE (i.e., n = k = 3, and every color i has only itself and i + 1 as a possible
successor, with 1/65 ≈ 0.015 chance to transition to i + 1), we get the following result, for
all i = 1, 2, 3:

urchSC(RED(τi)) = urchSC(GREEN(τi)) = urchSC(BLUE(τi)) = 1/3.

A sensible result, given the symmetry in transition probabilities between the colors:
every color has, besides itself, a unique permissible successor, and each color has the
same chance of switching to its respective successor. Breaking this symmetry in the
transition probabilities also breaks the symmetry in the marginals. For example, if
urchSC(RED(τi)|RED(τi−1)) = 0.5 for all i = 1, 2, 3 and the remaining transition chances
are unchanged, we get urchSC(RED(τi)) = 1/66 ≈ 0.015 and urchSC(GREEN(τi)) =

urchSC(BLUE(τi)) = 65/132 ≈ 0.492 for all i = 1, 2, 3. (The reader may verify this by plug-
ging the given transition probabilities into eq. 34 in Appendix D.) We can of course also
break the symmetry between the times, i.e., impose time-dependent transition probabilities,

56Mellor (1995, Sec. 17.3) once tried to leverage a mathematically similar fact into an argument against the
possibility of spacetime loops, by claiming that it’s impossible for transition chances to constrain marginal
chances (or, in his framework, marginal limiting frequencies) in this way. See Berkovitz (2001, pp.14-5) for a
cogent rebuttal.

57Marginal urchances are defined in the obvious way: urchC(A) := urchC(A|>), where> is any tautology.
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which then also makes the marginal probabilities time-dependent.
Once we have marginal chance distributions over states of the loop, we can derive

many other conditional chance distributions via the ratio formula. For example, consider a
two-dimensional version of CIRCLE, i.e. a flat 2D spacetime rolled up along the time-like
direction into a cylinder.58 For any subset of the cylinder, our account determines the
chance of any proposition conditional on any state of the subset, provided only that the
latter has positive marginal chance.

I said that the linear equations are “generically” independent, because in special
circumstances they aren’t, allowing for multiple solutions (i.e., in our framework, a non-
constant urchM). Roughly, this happens when there are too many deterministic transitions.
For illustration, consider a variant of SMALL CIRCLE, where the particle is guaranteed to
remain at its current color, i.e., for every COL ∈ {RED, GREEN, BLUE},

urchSC(COL(τi)|COL(τi−1)) = 1.

Given these transition chances, the only constraint the system imposes on the marginals
is urchSC(COL(τi−1)) = urchSC(COL(τi)). Any probabilistically coherent59 urchance
function which satisfies this constraint is nomically allowed. (In Appendix D, I show this
explicitly for the simplest non-trivial case, with n = k = 2. The case of SC, i.e. n = k = 3,
is computationally more complex, but doesn’t offer additional insight.)

So much for the case of a cyclic spacetime. The case of a spacetime with a wormhole is
mathematically similar. Generically, our account yields well-defined transition chances on
the region between the wormhole mouths, conditional on the state of the world prior to the
wormhole. Once we have those transition chances, the remaining calculation is exactly the
same. It follows that, conditional on the state of the world prior to the wormhole, there
is (generically) a precise chance distribution over states of the loop region, including a
precise chance distribution over what emerges from the wormhole. Only when enough
transition probabilities are trivial—e.g. if the dynamics is deterministic—is there no such
precise chance distribution.

58Mathematically, we can represent this by a two-dimensional, oriented, closed Lorentzian manifold.
59I.e., satisfying, for i = 1, 2, 3, ∑

COL∈
{RED,GREEN,BLUE}

urchSC(COL(τi)) = 1 (where addition is, as always,

point-wise).
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11 Conclusion

My theory of chances on loops consists of Strong Boundary Markov and Acyclic Chance
Invariance. Strong Boundary Markov is an a priori plausible constraint on local laws,
following from the idea that there shouldn’t be a difference between geometric information
about a region and other kinds of information about it—if the dynamics is local, both
should be screened off by a thick boundary. Acyclic Chance Invariance, meanwhile,
is a consistent weakening of an initially attractive, yet inconsistent, Chance Invariance
principle. The weakening says that chances are invariant among loop-free worlds. Given
the acyclic dynamics, these two general principles fix everything there is about chance in
cyclic worlds.

Our theory satisfies all theoretical criteria we’ve set out. It avoids temporalism’s
triviality problem, and it avoids the inconsistency plaguing general Chance Invariance.
Still, it manages to preserve the two next best things to Chance Invariance. The first
is Acyclic Chance Invariance. The second is the idea that chances are “dynamically
scrutable”: while not identical to them, the cyclic chances should be derivable from the
acyclic chances in a principled way. In our theory, Strong Boundary Markov and Acyclic
Chance Invariance provide this principled connection. Finally, we also saw how under
certain conditions—namely when, according to the acyclic chances, far-future events are
increasingly probabilistically independent of near-future events—chances are practically
invariant in the near-term.

While the essay’s focus is objective chance, it naturally has implications for rational
credence. Objective chance constrains credence via plausible deference principles.60 For
example, following the previous section, if you know the true (precise) transition chances
governing a cyclic world, generically you should have precise prior credences over the
world’s possible states. Likewise, if you know the true chance laws, and are well-informed
about the current state of the world, you should, in general, have precise expectations
about what will emerge from a future wormhole.

Programmatically, this essay supports flexible chance formalisms, by demonstrating
how they solve problems eluding other approaches. On our urchance formalism, all
propositions—not just temporal or causal histories—are eligible background propositions.
Of course, some propositions will be more informative than others. But we’ve seen that
even regions much smaller than entire temporal or causal history regions can be highly
informative.61 Some of these regions cover exactly the local environments of coin flips,

60See fn. 11 for a deference principle for urchance.
61That is, assuming we additionally supply information about the world’s background geometry—

something which the temporalist also has to do.
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of roulette wheels, or of decks of cards. The concept of a background proposition thus
comes to subsume the concept of a chance setup. Indeed, conceptual economy suggests
identifying the two: every background proposition is a chance setup, every chance setup a
background proposition. With this identification, our framework then enshrines a view
Popper (1959) embraced long ago: that chances are intimately tied, not to time or causation,
but to chance setups (“arrangements”, as he called them).
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Appendix

A Parental Markov Failure

A.1 Where Parental Markov Is False...

Consider the following one-dimensional spacetime, FORK (or F for short):

Suppose the world is home to a scalar field, with deterministic dynamics. Specifically,
suppose that the field everywhere takes the value 0 or 1, and that there are two kinds of
spacetime points: fork points, where two or more lines converge (represented by the grey
dot in the diagram above),62 and boring points, all the others. In any interval consisting,

62Topologically, we can define a fork point as any point p such that there are two or more open lines
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except for possibly its initial point, of boring points, the field remains constant. At a fork
point, meanwhile, the field’s value is determined by the values on the incoming lines. If it
is 1 on exactly an even number of incoming lines, it is also 1 at the fork point and on all
outgoing lines; otherwise it is 0 at the fork point and on all outgoing lines.

The above figure indicates three disjoint segments, A, B, and C. If we introduce for each
a homonymous binary variable whose value represent the field value taken throughout
the segment, the given dynamics entails the following (where X := (1− X)):

C = ABC + ABC + ABC + ABC. (25)

If A = B, this becomes C = C—contradiction. Hence eq. 25 entails that A = B.
Now, the empty set is a pure thick parent of A, and A doesn’t cause B. Hence, Parental

Markov requires that the empty set screen off A from B:

urchF(A = 1|B = 0) = urchF(A = 1|B = 1).

But, since the dynamics requires A = B,

urchF(A = 1|B = 0) = 1 6= 0 = urchF(A = 1|B = 1).

So Parental Markov is false.63

A.2 ...Boundary Markov Is Still True

Yet Boundary Markov is still true. To see this, note that the fork point p partitions FORK into
three disjoint segments: let A be the branch containing A, and B the branch containing B;
the third segment is C itself, with p ∈ C. Since A and B are connected segments consisting
of boring points only, the field value at one point in the segment nomically entails the field
values everywhere else in the segment. The same is true for C, where all points can be
connected to each other via segments consisting of boring points only. Let now R be any
region, and let D be a thick boundary of R. Note that, whenever R and R⊥ have non-empty
intersection with A, D also has non-empty intersection with A; the same goes for B and C
and arbitrary unions of {A,B, C}.64 (Where X and Y are regions, I’ll abbreviate “The field

containing p that do not share an open sub-line containing p.
63If you are worried that this case relies on trickeries with empty sets, it’s straightforward to change it

into one involving non-empty thick parents—just introduce additional intervals prior to A, generating a
non-trivial chance distribution over the field values in A.

64In particular, note that if R = A, then, due its thickness, D intersects both B and C. The same goes,
mutatis mutandis, for R = B and R = C.
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values throughout X entail the field values throughout Y” by “X entails Y”.)

• Case 1: Suppose D ∩ A 6= ∅ or D ∩ B 6= ∅. It follows that D either entails A or
entails B. Since the laws (eq. 25) moreover entail A = B, it follows that D entails
A∪ B.

– Case 1.1: Suppose R ∩ C 6= ∅ and R⊥ ∩ C 6= ∅. Then D ∩ C 6= ∅ and so D
entails C, and hence A∪ B ∪ C. In particular, D entails R.

– Case 1.2: Suppose R⊥ ∩ C = ∅. Then R⊥ ⊆ A∪ B and so D entails R⊥.

– Case 1.3: Suppose R ∩ C = ∅. Then R ⊆ A∪ B and so D entails R.

• Case 2: Suppose D ∩ A = ∅ and D ∩ B = ∅. Then D ⊆ C. It follows that either
A∪ B ⊆ R or (A∪ B) ∩ R = ∅.65

– Case 2.1: Suppose A∪ B ⊆ R. Then either C ⊆ R or D ∩ C 6= ∅. Since R⊥ ⊆ C,
in either case D entails R⊥.

– Case 2.2: Suppose (A∪ B) ∩ R = ∅. Then R ⊆ C and either R = ∅ or R 6= ∅.
If R = ∅, D triviallyentails R. If R 6= ∅, then either C ⊆ R or C 6⊆ R. If C ⊆ R,
then R = C, and so R⊥ = A∪B and D ∩ (A∪B) 6= ∅. It follows that D entails
A∪ B and hence R⊥. If C 6⊆ R, then R⊥ ∩ C 6= ∅ and so D ∩ C 6= ∅. It follows
that D entails R.

So, in every case, D either entails R or entails R⊥. In particular,

urchF(Q1(R⊥)|Q2(R) ∪Q3(D)) = urchF(Q1(R⊥)|Q3(D)),

for any intrinsic properties Q1 and Q2, and maximal intrinsic property Q3 such that
Q2(R) ∪Q3(D) are nomically possible. �

B Thick Neighborhoods = Neighborhoods of Closures

Let a neighborhood of R be any open superset of R. We’ve defined a thick neighborhood N as a
neighborhood which satisfies the following additional condition: every continuous curve
starting in N⊥ and ending in R has a non-trivial subcurve in N\R before ever intersecting
R. Here we prove that, in any space homeomorphic to Rn, N is a thick neighborhood of R
iff N is a neighborhood of R’s closure, denoted R. It follows that B is a thick boundary of

65For suppose otherwise, i.e. (A∪ B) ∩ R⊥ 6= ∅ and (A∪ B) ∩ R 6= ∅. Then (A∪ B) ∩ D 6= ∅ and hence
D 6⊆ C.
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R iff B is disjoint from R and B ∪ R contains a neighborhood of R. We’ll make ample use
of this equivalence in Appendix C.

Theorem 1. Equivalence. For any R, N ⊆ Rn, N is a thick neighborhood of R
iff N is a neighborhood of R.

Proof : Right-to-left direction: Let N be a neighborhood of R, and let c be a continuous
curve which starts in N⊥ and ends in R. Without loss of generality, assume c : [0, 1]→ Rn.
Since c is continuous, c−1(R) ⊆ [0, 1] is closed and hence compact. Hence there is a first
point t∗ ∈ [0, 1] such that q := c(t∗) ∈ R and for all t < t∗, c(t) 6∈ R. Since N is open and
q ∈ N, there is an open ball B(q) ⊆ N around q. Since c is continuous, c−1(B(q)) is open,
and so there is a t− < t∗ such that ]t−, t∗[ is an open interval in c−1(B(q)). Since B(q) ⊆ N
and for all t < t∗, c(t) 6∈ R, the subcurve c|]t−,t∗[ is a non-trivial subcurve of c in N\R prior
to ever intersecting R, and so in particular a non-trivial subcurve in N\R prior to ever
intersecting R.

Left-to-right direction: Suppose, for contradiction, that N is a thick neighborhood of R
but not a neighborhood of R. Then R 6⊆ N, and so there is a q ∈ R\N. We now construct a
continuous curve starting in q such that every non-trivial initial segment of it intersects R.
Since q ∈ R, for every r > 0 the open ball Br(q) has non-empty intersection with R. For
every n ∈N>0, choose a point qn in B1/n(q) ∩ R. Let c : [0, 1]→ Rn be such that c(0) = q,
for all n ∈N>0 c(1/n) = qn, and c maps ]1/(n + 1), 1/n[ continuously to the straight line
from qn+1 to qn, excluding endpoints. We now prove that c is continuous. The subcurve
c|]0,1] maps ]0, 1] into a concatenation of straight lines, and hence is continuous. It remains
to prove that c is continuous at 0. Let {ak}k∈N be any sequence in [0, 1] converging to
0. Since balls in Rn are convex, for every r ∈ [0, 1[, c(r) ∈ Bm(q) where m is the largest
integer such that r < 1/m. Since {ak}k∈N converges to 0, for every δ ∈]0, 1[ there is a
k ∈ N such that for all l > k, al ∈ [0, δ[, and hence (by the foregoing) c(al) ∈ B1/m(q)
where m is the largest integer such that δ < 1/m. Let now ε ∈]0, 1]. Then there is a smallest
integer m ≥ 2 such that 1/(m− 1) < ε. Since 1/m ∈]0, 1[, it follows from the foregoing
that there is a k ∈ N such that for every l > k, al ∈ [0, 1/m[ and c(al) ∈ B1/(m−1)(q)
(since m− 1 is the largest integer such that 1/m < 1/(m− 1)). Since 1/(m− 1) < ε, it
follows that c(al) ∈ Bε(q). So, for every ε ∈]0, 1], there is a δ ∈]0, 1] (namely δ = 1/m)
such that for all l with |al| < δ, c(al) ∈ Bε(q). This proves that c is continuous at 0. So c is
continuous over [0, 1]. Hence c is a continuous curve which starts in N⊥, ends in R, and
every non-trivial initial segment intersects R; in particular, it has no non-trivial subcurve
in R⊥ ⊇ N\R before ever intersecting R, in contradiction with the assumption that N is a
thick neighborhood of R. So N is a neighborhood of R. �
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C Parental Markov and Boundary Markov

Here we prove that, given plausible conglomerability and locality assumptions about
urchance, Parental Markov already ensures, for sufficiently well-behaved regions, that
they are screened off by their thick boundaries in Minkowski spacetime.

We’ll first establish some auxiliary lemmas. As before, a neighborhood of A is any open
superset of A. Where B is a thick boundary of R, let B+

R := K+(R) ∩ B, and B−R := B\B+
R

the rest of B. (To recall, K+(R) denotes R’s proper causal future.) Note also the following
elementary fact: if B is a thick boundary of R, then every continuous curve starting in
(R ∪ B)⊥ and ending in R has a non-trivial subcurve in B before ever intersecting R.66

Call a region causally convex iff it contains all causal curves starting and ending in it.
(“Sufficiently well-behaved” will denote a mild strengthening of causal convexity.)

Lemma 1: For any causally convex region R and any thick boundary B of R, B−R
is a pure thick parent of R.

Proof of Lemma 1: Let c be a future-directed causal curve starting in (R ∪ B−R )
⊥ and ending

in R. Since c starts in R⊥ and ends in R, c starts, specifically, in K−(R) ⊆ R⊥. Since R is
causally convex, K+(R)∩K−(R) = ∅. It follows that c starts in (R ∪ B)⊥ and ends in R.
Since B is a thick boundary of R, c therefore has a non-trivial subcurve in B before ever
intersecting R. Suppose, for contradiction, that there is a point q where c intersects B+

R and
let t ∈ [0, 1] such that c(t) = q. Since q is in K+(R), there is a future-directed causal curve
c′ starting in R and ending in q. Concatenating c′ and c|[t,1] thus yields a future-directed
causal curve starting in R, intersecting B+

R and ending in R. Since B+
R ⊆ R⊥, this contradicts

R’s causal convexity. So c doesn’t intersect B+
R . Hence c has a non-trivial subcurve in

B\B+
R = B−R before ever intersecting R. So B−R is a thick parent of R. Finally, suppose for

contradiction that R causes some point r in B−R . Then there is a future-directed causal
curve c∗ starting in R and ending in r. Since r is in K−(R), there is a future-directed causal
curve c∗∗ starting in r and ending in R. Concatenating c∗ and c∗∗ thus yields a future-
directed causal curve starting in R, intersecting B−R , and ending in R. Since B−R ⊆ R⊥, this
contradicts R’s causal convexity. Hence B−R is a pure thick parent of R. �

66The reverse implication fails, however. In R, consider B =
∞⋃

n=1
] − 1

n ,− 1
n+1 [∪{0} and R =]0,+∞[.

Every continuous curve which starts in (R ∪ B)⊥ and ends in R has a non-trivial subcurve in B before ever
intersecting R. But no open subset of (R ∪ B) has that property—that is, no open set N ⊆ R ∪ B is such that
every curve starting in N⊥ and ending in R has a non-trivial subcurve in N before ever intersecting R. Hence
B isn’t a thick boundary of R. The Equivalence theorem (Appendix B) relies on this extra strength in the
definition of “thick boundary”.
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Lemma 2: If R is causally convex, K+(R) fully contains all future-directed
causal curves starting in it; in particular, K+(R) is causally convex.

Proof of Lemma 2: Let R be causally convex and suppose for contradiction that there is
a future-directed causal curve c starting in K+(R) and intersecting (K+(R))⊥. By the
definition of J+(R), J+(R) contains all future-directed causal curves starting in it. Since
K+(R) = J+(R)\R, c thus intersects R in some point q; choose a t ∈ [0, 1] such that
c(t) = q. Let p be c’s starting point. Since p ∈ J+(R), there is a future-directed causal
curve c∗ starting in R and ending in p. Concatenating c∗ and c|[0,t] yields a future-directed
causal curve that starts in R, intersects K+(R) ⊆ R⊥, and ends in R, in contradiction with
R’s causal convexity. So K+(R) contains all future-directed causal curves starting in it. It
follows that K+(R) is causally convex. �

Let a thick child of R be any set C such that every future-directed causal curve starting in R
and ending in (R ∪ C)⊥ has a non-trivial subcurve in C before ever intersecting (R ∪ C)⊥.

Lemma 3: For any region R in Minkowski spacetime and any thick boundary B
of R, if both R and R ∪ B are causally convex, then

(i) B+
R is a thick child of R, and

(ii) R ∪ B−R is a pure thick parent of B+
R .

Proof of Lemma 3: (i): Let c be a future-directed causal curve starting in R and intersecting
(R ∪ (B+

R ))
⊥. Since R is causally convex, K+(R) ∩ K−(R) = ∅, and so K+(R) ∩ B−R = ∅.

Since also R ∩ B−R = ∅, we have J+(R) ∩ B−R = ∅. But J+(R) contains c, so c doesn’t
intersect B−R . Since B = B+

R ∪ B−R , c thus intersects (R ∪ B)⊥. Since B is a thick boundary
of R, B is a thick boundary of (R ∪ B)⊥. Hence c has a non-trivial subcurve in B before
ever intersecting (R ∪ B)⊥. Since c doesn’t intersect B−R , it follows that c has a non-trivial
subcurve in B+

R before ever intersecting (R ∪ B+
R )
⊥. So B+

R is a thick child of R.
(ii): In Minkowski spacetime, the causal future of a neighborhood of A’s closure is a

neighborhood of the closure of A’s causal future.67 Since B is a thick boundary of R, R ∪ B
contains a neighborhood N of R (cf. Equivalence, Appendix B). Thus J+(N) is a neigh-
borhood of J+(R). Since J+(N) ⊆ J+(R ∪ B), J+(R ∪ B) thus contains a neighborhood of
J+(R), and since B+

R ⊆ J+(R), J+(R ∪ B) contains a neighborhood of B+
R . Therefore, all

67To see this, note the following three facts about Minkowski spacetime (the first is true for any spacetime):
1. If A ⊆ B, then J+(A) ⊆ J+(B).
2. Closure and causal future “commute”, i.e. J+(A) = J+(A) for any region A.
3. If A is open, J+(A) is open.

Let then N be a neighborhood of Ā. Since Ā ⊆ N we have, by the first fact, J+(Ā) ⊆ J+(N). By the second
fact, J+(A) ⊆ J+(N). Finally, by the third fact, J+(N) is open, and hence a neighborhood of J+(A).
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continuous curves which start in (J+(R ∪ B))⊥ and end in B+
R have a non-trivial subcurve

in J+(R∪ B)\B+
R before ever intersecting B+

R . Let c be a future-directed causal curve which
starts in (R ∪ B)⊥ and ends in B+

R . Since (R ∪ B)⊥ ⊆ (J+(R ∪ B))⊥, c has a non-trivial
subcurve in J+(R ∪ B)\B+

R before ever intersecting B+
R . Suppose, for contradiction, that c

doesn’t have a non-trivial subcurve in R ∪ B−R before ever intersecting B+
R . Then c must

intersect
(

J+(R ∪ B)\B+
R
)
\(R ∪ B−R ) =J+(R ∪ B)\(R ∪ B) = K+(R ∪ B). Let q be a point

in K+(R∪ B) which c intersects, and choose a t ∈ [0, 1] with c(t) = q. Since q ∈ K+(R∪ B),
there is a future-directed causal curve c∗ starting in R ∪ B and ending in q. Concatenat-
ing c∗ and c|[t,1] thus yields a future-directed causal curve that starts in R ∪ B, intersects
K+(R ∪ B) ⊆ (R ∪ B)⊥, and ends in B+

R ⊆ (R ∪ B), in contradiction with R ∪ B’s causal
convexity. So c has a non-trivial subcurve in R ∪ B−R before ever intersecting B+

R . Hence
R ∪ B−R is a thick parent of B+

R . Finally, suppose for contradiction that B+
R causes R ∪ B−R .

Since B+
R ⊆ K+(R) and R ∪ B−R ⊆ K+(R)⊥, it follows that K+(R) causes K+(R)⊥. Since

J+(R) = K+(R) ∪ R contains all future-directed causal curves which start in it, it follows
that K+(R) causes R. Since R causes every point in K+(R), there is thus a future-directed
causal curve starting in R, intersecting K+(R) ⊆ R⊥, and ending in R, in contradiction
with R’s causal convexity. Hence R ∪ B−R is a pure thick parent of B+

R . �

For any spacetime region X, let R(X) denote the set of all possible maximally specific
intrinsic properties of X. For any x ∈ R(X), I’ll also write X = x instead of x(X). For
any x ⊆ R(X), let X ∈ x denote the proposition that X = x for some x ∈ x. Let
an urchance candidate be any function u mapping pairs of propositions to functions on
total, primitively conditional probability functions, such that, where u is such a function,
u(X, Y)(u) = u(X, Y). (In particular, then, urchance functions are urchance candidates.)

Def. Regional Conglomerability: An urchance candidate u is regionally con-
glomerable iff, for any spacetime region X, any x ⊆ R(X), any propositions A
and B, and any a, b ∈ [0, 1] with a < b: if a ≤ u(A|X = x ∧ B) ≤ b for all x ∈ x,
then

a ≤ u(A|X ∈ x ∧ B) ≤ b.

Where u is an urchance candidate, let R(Z)u denote the set of properties which are
possible maximally specific intrinsic properties of Z according to u.68 Let (R(Y)×R(Z))u

68 In our system, a proposition A is possible according to u iff u(¬A|A) < 1, and A is necessary according to u
iff u(A|¬A) = 1. These are dual provided all functions in u’s range agree on what’s impossible; that is, for all
u, u′ in u’s range and all A, u(¬A|A) = 1 iff u′(¬A|A) = 1. (To see this: ¬A is impossible iff u(A|¬A) 6< 1,
i.e. iff for some u in u’s range, u(A|¬A) = 1. But given that all u agree on what’s impossible, this is the case
iff, for all u in u’s range, u(A|¬A) = 1, i.e., iff u(A|¬A) = 1.) Recall that, by assumption, all functions in an
urchance function’s range agree on what’s impossible—cf. fn. 13. Hence “possible according to urch” and
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denote the set of property pairs (y, z) such that: according to u, y and z are possible
maximally specific intrinsic properties of Y and Z, respectively, and it’s possible, according
to u, that Y = y ∧ Z = z.

In addition to conglomerability, we need an additional locality assumption: information
about a region is “nothing over and above” information about its parts. That is, necessarily,
for any regions X, Y, maximally specifying X and Y, in a nomically compatible way,
also maximally specifies their union X ∪ Y in a nomically possible way; moreover every
nomically possible maximal property of the union can be so specified. Call this property
Separability. Technically:

Def. Separability: An urchance candidate u is separable iff, for any spacetime
regions X, Y, there is a one-to-one correspondence

φ : (R(X)×R(Y))u → R(X ∪Y)u,

such that for any (x, y) ∈ (R(X)×R(Y))u, necessarily according to u, (X =

x ∧Y = y)↔ (X ∪Y = φ(x, y)).

Whenever such a φ exists I’ll slightly abuse notation and write (R(X)×R(Y))u = R(X ∪
Y)u, as well as X ∪Y = (x, y) instead of X ∪Y = φ(x, y).

For any urchance candidate u and for any regions X, Y, Z, let (X⊥⊥Y|Z)u denote that Z
screens off X from Y according to u; that is:

(X⊥⊥Y|Z)u iff: for all x ⊆ R(X), y× {z} ⊆ (R(Y)×R(Z))u,

u(X ∈ x|Y ∈ y ∧ Z = z) = u(X ∈ x|Z = z).

We have the following lemma (the names of the conditions follow Pearl’s (1985) nomencla-
ture for graphoids):

Lemma 4. Spacetime Graphoid Theorems: For any urchance candidate u, if u
is regionally conglomerable and separable, then for any regions X, Y, Z, and W:

• Contraction: If (X⊥⊥Y|Z)u and (X⊥⊥W|Z ∪Y)u, then (X⊥⊥W ∪Y|Z)u.

• Weak Union: If (X⊥⊥Y ∪W|Z)u, then (X⊥⊥Y|Z ∪W)u.69

“necessary according to urch” are dual if urch is an urchance function.
69The graphoid theorem Decomposition—if (X⊥⊥W ∪Y|Z)u, then (X⊥⊥W|Z)u ∧ (X⊥⊥Y|Z)u—is also valid,

and the proof is immediate. By contrast, only a restricted version of Symmetry is valid: provided that
[for all x ⊆ R(X)u and z ∈ R(Z)u, u(X ∈ x|Z = z) > 0], (X⊥⊥Y|Z)u implies (Y⊥⊥X|Z)u. Likewise,
only a restricted version of Intersection is valid: provided that [whenever (w, z) ∈ (R(W) ×R(Z))u and
(y, z) ∈(R(Y)×R(Z))u, (w, y, z) ∈(R(W)×R(Y)×R(Z))u], (X⊥⊥Y|Z ∪W)u and (X⊥⊥W|Z ∪Y)u imply
(X⊥⊥W ∪Y|Z)u. As none of these three properties will play a role in the following, I’ll omit the proofs.
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Proof of Lemma 4:
Contraction: Suppose (X⊥⊥Y|Z)u and (X⊥⊥W|Z ∪ Y)u. That is: for any y × {z} ⊆

(R(Y)×R(Z))u,

u(X ∈ x|Y ∈ y ∧ Z = z) = u(X ∈ x|Z = z), (26)

and for any w× {(y, z)} ⊆ (R(W)×R(Y)×R(Z))u,

u(X ∈ x|W ∈ w ∧Y = y ∧ Z = z) = u(X ∈ x|Y = y ∧ Z = z). (27)

By eqs. 26 and 27, for any (w, y, z) ∈ (R(W)×R(Y)×R(Z))u,

u(X ∈ x|W = w ∧Y = y ∧ Z = z) = u(X ∈ x|Y = y ∧ Z = z)

= u(X ∈ x|Z = z). (28)

But by Separability, (R(W)×R(Y)×R(Z))u = (R(W ∪ Y)×R(Z))u. Thus, by eq. 28
and Regional Conglomerability, for any v ⊆ R(W ∪ Y)u such that v× {z} ⊆ (R(W ∪
Y)×R(Z))u,

u(X ∈ x|W ∪Y ∈ v ∧ Z = z) = u(X ∈ x|Z = z).

But this is just (X⊥⊥W ∪Y|Z)u. �
Weak Union: Suppose (X⊥⊥Y ∪W|Z)u, i.e. for all x ⊆ R(X)u and v× {z} ⊆ (R(Y ∪

W)×R(Z))u,
u(X ∈ x|Y ∪W ∈ v ∧ Z = z) = u(X ∈ x|Z = z). (29)

For any (w, z) ∈ (R(W)×R(Z))u, let >w,z ⊆ R(Y) be such that, according to u, W =

w ∧ Z = z entails Y ∈ >w,z. Then

u(X ∈ x|W = w ∧ Z = z) = u(X ∈ x|Y ∈ >w,z ∧W = w ∧ Z = z)

= u(X ∈ x|Y ∪W ∈ >w,z × {w} ∧ Z = z)
eq.29
= u(X ∈ x|Z = z). (30)

But now, for any y× {w} × {z} ⊆ (R(Y)×R(W)×R(Z))u,

u(X ∈ x|Y ∈ y ∧W = w ∧ Z = z) = u(X ∈ x|Y ∪W ∈ y× {w} ∧ Z = z)
eq.29
= u(X ∈ x|Z = z)

eq.30
= u(X ∈ x|W = w ∧ Z = z).
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But, by Separability, (R(W)×R(Z))u = R(W ∪ Z)u. So this is just (X⊥⊥Y|Z ∪W)u. �

The conglomerability and locality constraints on urchance are just this:

Thesis. Necessarily, the urchance function is regionally conglomerable and
separable.

This entails, by Lemma 4, that urchance validates Contraction and Weak Union.
As in the main text, when I speak of “Z screens off X from Y” (simpliciter)—denoted

X⊥⊥Y|Z—I mean screens off according to the urchance function, conditioned on a complete
description of the world’s geometry. Finally, say that a region R is tolerantly causally convex
iff it is causally convex and every thick boundary of R contains a thick boundary B′ of R
such that R ∪ B′ is causally convex. (This is the aforementioned strengthening of causal
convexity.) Many regions we typically consider are tolerantly causally convex—including
any history segment (e.g., in Minkowski spacetime, the region between two Cauchy
surfaces) and any light-cone segment (i.e., the intersection of a history segment and a past
or future light-cone). We can now state the main result.

Theorem. Parental Markov & Boundary Markov. In Minkowski spacetime,
Parental Markov entails that, for all regions R, if R is tolerantly causally convex
and B is a thick boundary of R, then B screens off R from R⊥.

Proof of Theorem: Let R be causally convex and B∗ a thick boundary of R. Since R is
tolerantly causally convex, there is a B ⊆ B∗ such that B is a thick boundary of R and R∪ B
is causally convex. Once we show that R⊥⊥R⊥|B, the desired result follows immediately
by Weak Union: for, since B∗ ⊆ R⊥ and B ⊆ B∗, R⊥⊥R⊥|B entails R⊥⊥R⊥|B∗.

Now, to prove R⊥⊥R⊥|B, note the following three facts:

1. B−R is a pure thick parent of R.

2. There is a region S disjoint from R ∪ B such that R ∪ B−R ∪ S is a pure thick parent of
K+(R). (“S” stands for “spouse”.)

3. B+
R is a thick child of R, and R ∪ B−R is a pure thick parent of B+

R .

The first fact follows from Lemma 1 and R’s causal convexity. The second fact fol-
lows like this: by Lemma 2, K+(R) is causally convex, and so, by Lemma 1 again,
K+(R) has a pure thick parent. Since R is causally convex, K+(R) contains all causal
curves which start in it, and so K+(R) doesn’t cause R∪B−R . Hence there is a pure
thick parent P of K+(R) which contains R ∪ B−R . Now simply choose S := P\(R ∪
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B−R ). The third fact is just Lemma 3. The following sketch offers some orientation:

Below we show the following three facts:

R⊥⊥R⊥ | B ∪ S ∪ (K+(R)\B), (31)

R⊥⊥(K+(R)\B) | B ∪ S, (32)

R⊥⊥S | B. (33)

Once these are proven, R⊥⊥R⊥|B follows: facts 32 and 33 entail, by Contraction,

R⊥⊥(K+(R)\B) ∪ S|B.

Contracting again with fact 31 gives

R⊥⊥R⊥ ∪ (K+(R)\B) ∪ S|B.

But K+(R)\B ∪ S ⊆ R⊥, hence
R⊥⊥R⊥|B.

Proof of fact 31: Recall that R ∪ B−R ∪ S is a pure thick parent of K+(R). By Lemma 1, B−R
is a pure thick parent of R. Since S is disjoint from R, it follows that B−R ∪ S is a thick parent
of R ∪ K+(R) = J+(R).70 Moreover, since S and B−R are disjoint from R and subsets of a

70This follows from the following general lemma (instantiate V with K+(R); P with R ∪ B−R ∪ S; T with
B−R ; and P′ with R):

Lemma: Let V be any region and P be a thick parent of V. Then, if T is a thick parent of some
subset P′ ⊆ P, then T ∪ (P\P′) is a thick parent of V ∪ P′.

Proof of lemma: Let P be a thick parent of V, and T be a thick parent of a subset P′ ⊆ P. Let c be a future-
directed causal curve starting in (T ∪ P ∪ V)⊥ and ending in V ∪ P′. We show that c has a non-trivial
subcurve in T ∪ (P\P′) before ever intersecting V ∪ P′. Then c either ends in P′ or ends in V.
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thick parent of K+(R), and thus also disjoint from K+(R), B−R ∪ S is a pure thick parent of
J+(R). Since J+(R) contains every future-directed causal curve starting in it, J+(R) doesn’t
cause its complement (J+(R))⊥. Hence, by Parental Markov, J+(R)⊥⊥(J+(R))⊥|B−R ∪ S.
By Weak Union, R⊥⊥(J+(R))⊥|K+(R)∪ B−R ∪ S, and thus R⊥⊥(J+(R))⊥ ∪ K+(R)|K+(R)∪
B−R ∪ S. By definition, (J+(R))⊥ ∪ K+(R) = R⊥ and K+(R) ∪ B−R = B ∪ (K+(R)\B). So
R⊥⊥R⊥|B ∪ (K+(R)\B) ∪ S.

Proof of fact 32: Recall, again, that R ∪ B−R ∪ S is a pure thick parent of K+(R). By
Lemma 3(i), B+

R is a thick child of R. It follows that B+
R ∪ B−R ∪ S = B ∪ S is a thick

parent of K+(R)\B+
R .71 We now show that K+(R)\B+

R doesn’t cause B ∪ S. Since R is
causally convex, K+(R) contains all future-directed causal curves starting in K+(R). In
particular, K+(R), and hence K+(R)\B+

R , don’t cause B−R ∪ S. Now suppose, for contradic-
tion, that K+(R)\B+

R causes B+
R . Then there is a future-directed causal curve c starting in

K+(R)\B+
R = K+(R)\B ⊆ (R ∪ B)⊥ and ending in B+

R ⊆ R ∪ B. Since c starts in K+(R),
there is a future-directed causal curve c∗ from R to c’s starting point. Concatenating c∗

and c yields a future-directed causal curve that starts in R ∪ B, intersects (R ∪ B)⊥, and
ends in R ∪ B, in contradiction with R ∪ B’s causal convexity. So K+(R)\B+

R doesn’t cause
B+

R . Hence K+(R)\B+
R doesn’t cause B+

R ∪ B−R ∪ S = B ∪ S, and so B ∪ S is a pure thick

Suppose c ends in P′. Since c starts in (T ∪ P′)⊥ and T is a thick parent of P′, there are τ0, τ1 ∈ [0, 1] with
τ0 < τ1 such that c(]τ0, τ1[) ⊆ T and c([0, τ1[) ⊆ P′⊥. If c([0, τ1[) ⊆ V⊥, then c([0, τ1[) ⊆ (V ∪ P′)⊥, and
so c|[0,τ1[

is a non-trivial subcurve in T—and a fortiori in T ∪ (P\P′)—which c has before ever intersecting
V ∪ P′. If instead c([0, τ1[) 6⊆ V⊥, c−1(V) has an infimum x in [0, τ1[. Since P is a thick parent of V, c|[0,x[

contains a non-trivial subcurve in P before ever intersecting V. Since c([0, x[) ⊆ P′⊥, it follows that c|[0,x[
contains a non-trivial subcurve in P\P′—and a fortiori in T ∪ (P\P′)—before ever intersecting V ∪ P′.

Suppose that c ends in V. Since c starts in (V ∪ P)⊥ and P is a thick parent of V, there are s0, s1 ∈ [0, 1] with
s0 < s1 such that c(]s0, s1[) ⊆ P and c([0, s1[) ⊆ V⊥. If c([0, s1[) ⊆ P′⊥, then c|]s0,s1[

is a non-trivial subcurve
in P\P′—and a fortiori in T ∪ (P\P′)—which c has before ever intersecting V ∪ P′. If instead c([0, s1[) 6⊆ P′⊥,
c−1(P′) has an infimum y in [0, s1[. Since T is a thick parent of P′, c|[0,y[ contains a non-trivial subcurve in
T before ever intersecting P′. Since c([0, y[) ⊆ V⊥, it follows that c|[0,x[ contains a non-trivial subcurve in
T—and a fortiori in T ∪ (P\P′)—before ever intersecting V ∪ P′. �

71This follows from the following general lemma (instantiate V with K+(R), P with R ∪ B−R ∪ S, C with
B+

R , and P′ with R):

Lemma: Let V be any region and P be a thick parent of V. Let C be a thick child of some P′ ⊆ P.
Then (P\P′) ∪ C is a thick parent of V\C.

Proof of lemma: Let c be a future-directed causal curve starting in ((P\P′) ∪ C ∪ V)⊥ and ending in V\C.
Then c is, in particular, a future-directed causal curve starting in V⊥ and ending in V. Since P is a thick
parent of V, there are thus a, b ∈ [0, 1] with b > a such that c(]a, b[) ⊆ P and c([0, b[) ⊆ V⊥. If c(]a, b[) ⊆ P′⊥,
then c(]a, b[) is a non-trivial subcurve in P\P′—a fortiori, in P\P′ ∪ C—which c has before ever intersecting
V, and hence before ever intersecting V\C. If instead c(]a, b[) 6⊆ P′⊥, then the infimum x of c−1(P′) is in
[0, b[. Hence there is a y ∈]x, b[ such that c(y) ∈ P′. But then c|[y,1] is a curve that starts in P′ and ends in
V\C ⊆ (P′ ∪ C)⊥. Since C is a thick child of P′, c|[y,1] thus contains a non-trivial subcurve in C before ever
intersecting V\C. But c([0, y]) ⊆ V⊥ ⊆ (V\C)⊥, and so c itself contains a non-trivial subcurve in C before
ever intersecting V\C. In either case,(P\P′) ∪ C is a thick parent of V\C. �
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parent of K+(R)\B. Finally, since K+(R) contains all future-directed causal curves starting
in K+(R), K+(R)\B doesn’t cause R. So Parental Markov implies R⊥⊥(K+(R)\B)|B ∪ S.

Proof of fact 33: Recall that R ∪ B−R is a thick parent of B+
R . Moreover, by Lemma 1,

B−R is a thick parent of R. It follows that B−R is a thick parent of R ∪ (B+
R ).

72 Since R is
causally convex, J+(R) fully contains all future-directed causal curves starting in it. Hence
R ∪ B+

R ⊆ J+(R) doesn’t cause B−R ⊆ J+(R)⊥. Hence B−R is a pure thick parent of R ∪ B+
R .

Since S is not caused by R ∪ B+
R , Parental Markov entails that R ∪ B+

R⊥⊥S|B−R . By Weak
Union, R⊥⊥S|B. �

D Marginal Chances over CIRCLE

Abbreviate urchC(τi = j) as [ij] and urchC(τi = j|τi′ = j′) as [ij|i′ j′]. For every i = 1, ..., n
and j = 1, ..., k, eqs. 23 and 24 are then more compactly written as follows (where 0 in an
index is identified with n):

[ij] =
k

∑
l=1

[ij|(i− 1)l] · [(i− 1)l],

1 =
k

∑
j=1

[ij].

This yields the following n · (k− 1) equations, one for every i = 1, ..., n and j = 1, ..., k− 1:

72This follows from the following additional lemma (instantiate P with B−R , Q with R, and V with B+
R ):

Lemma: Let Q be causally convex. Let P be a thick parent of Q and Q ∪ P be a thick parent of
V. Then P is a thick parent of Q ∪V.

Proof : Let c be a future-directed causal curve starting in (Q ∪ P ∪V)⊥ and ending in Q ∪V. c either ends
in Q or in V. We show that, in each case, c has a non-trivial subcurve in P before ever intersecting Q ∪V.
First, suppose c ends in Q. Since P is a thick parent of Q and c starts in Q⊥, c has a non-trivial subcurve in
P before ever intersecting Q. Since Q is causally convex, V ⊆ K+(Q) doesn’t cause Q, and so c intersects
Q before ever intersecting V. Hence c has a non-trivial subcurve in P before ever intersecting Q ∪V; done.
Second, suppose that c ends in V. Since Q ∪ P is a thick parent of V and c starts in (Q ∪ P ∪V)⊥ and ends in
V, there are a, b ∈ [0, 1] such that c(]a, b[) ⊆ Q ∪ P and c([0, b[) ⊆ V⊥. Suppose c([0, b[) ⊆ Q⊥. Then c|]a,b[ is
a non-trivial subcurve in P which c has before ever intersecting Q ∪V; done. Suppose instead c([0, b[) 6⊆ Q⊥.
Then there is a q ∈ [0, b[∩Q. Since c(0) ∈ Q⊥, c|[0,q[ is a future-directed causal curve starting in Q⊥ and
ending in Q. Since P is a thick parent of Q, c|[0,q[ thus has a non-trivial subcurve in P before ever intersecting
Q. Since c([0, q[) ⊆ c([0, b[) ⊆ V⊥, c thus has a non-trivial subcurve in P before ever intersecting Q ∪V. �
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[ij] =

(
k−1

∑
l=1

[ij|(i− 1)l] · [(i− 1)l]

)
+ [ij|(i− 1)k] ·

(
1−

k−1

∑
l=1

[(i− 1)l]

)

=
k−1

∑
l=1

(
[ij|(i− 1)l]− [ij|(i− 1)k]

)
· [(i− 1)l] + [ij|(i− 1)k],

which can be rearranged to

[ij] +
k−1

∑
l=1

(
[ij|(i− 1)k]− [ij|(i− 1)l]

)
· [(i− 1)l] = [ij|(i− 1)k].

Writing this linear system as a matrix equation yields the following:

M · p̂ = v̂, (34)

where

p̂ = ([11], ..., [1(k− 1)], [21], ..., [2(k− 1], ..., [n1], ..., [n(k− 1)])T

= ([ij])T
i=1,...,n;j=1,...,(k−1)

is a length n(k− 1) column vector of marginal probabilities (·T denotes the transpose),

v̂ = ([11|nk], ..., [1(k− 1)|nk], [21|1k], ..., [2(k− 1)|1k], ..., [n1|(n− 1)k], ..., [n(k− 1)|(n− 1)k])T

= ([ij|(i− 1)k])T
i=1,...,n;j=1,...,(k−1)

is a length n(k− 1) column vector, and

M =



Ik−1 0 0 0 . . . 0 P1
k−1

P2
k−1 Ik−1 0 0 . . . 0 0
0 P3

k−1 Ik−1 0 . . . 0 0
...
0 0 0 ... Pn

k−1 Ik−1


,

is a n(k− 1)× n(k− 1) matrix, where Ik−1 is the (k− 1)× (k− 1) identity matrix and

Pi
k−1 = Qi

k−1 − Ri
k−1
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is the (k− 1)× (k− 1) matrix such that

Qi
k−1 =


[i1|(i− 1)k] [i1|(i− 1)k] . . . [i1|(i− 1)k]
[i2|(i− 1)k] [i2|(i− 1)k] . . . [i2|(i− 1)k]

...
[i(k− 1)|(i− 1)k] [i(k− 1)|(i− 1)k] . . . [i(k− 1)|(i− 1)k]

 ,

and

Ri
k−1 =


[i1|(i− 1)1] [i1|(i− 1)2] . . . [i1|(i− 1)(k− 1)]
[i2|(i− 1)1] [i2|(i− 1)2] . . . [i2|(i− 1)(k− 1)]

...
[i(k− 1)|(i− 1)1] [i(k− 1)|(i− 1)2] . . . [i(k− 1)|(i− 1)(k− 1)]

 .

Both the matrix M and the enriched matrix (M|v̂) generically have full rank n(k− 1), and
so generically p̂ is unique.

To illustrate this further, consider CIRCLE. Because every color j only has itself and
color j + 1 as permissible successors, all entries of Qi

k−1 besides the first row are 0, and
all entries of Ri

k−1 besides the diagonal and the first lower diagonal are 0. In the simplest
non-trivial case, n = k = 2, the loop is two days long, with two possible colors per day. In
this case—call it SUPER SIMPLE CIRCLE, or SSC—we have

M =

(
1 [11|22]− [11|21]

[21|12]− [21|11] 1

)

and
v̂ = ([11|22], [21|12])T.

Note that M and (M|v̂) both have rank 2 unless

[21|12]− [21|11] = [11|22]− [11|21] = ±1,

i.e. unless either73

urchSSC(τ2 = 1|τ1 = 2) = urchSSC(τ1 = 1|τ2 = 2) = 1,

urchSSC(τ2 = 1|τ1 = 1) = urchSSC(τ1 = 1|τ2 = 1) = 0,

73We always assume that transition probabilities are precise.
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or

urchSSC(τ2 = 1|τ1 = 2) = urchSSC(τ1 = 1|τ2 = 2) = 0,

urchSSC(τ2 = 1|τ1 = 1) = urchSSC(τ1 = 1|τ2 = 1) = 1.

In the first case, the particle is guaranteed to switch color every time. Any probabilistically
coherent assignment of marginals respecting urchSSC(τ1 = 1) = urchSSC(τ2 = 2) is a
solution to the equations. In the second case, the particle is guaranteed to retain its
color every time. Here, any probabilistically coherent assignment of marginals respecting
urchSSC(τ1 = 1) = urchSSC(τ2 = 1) is a solution to the resulting equations. These are the
only two possible cases for SSC in which the dynamics fails to determine unique marginal
chance distributions over the states of the loop.
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