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Abstract

The project of reducing causation to counterfactual dependence—initiated over half

a century ago by David Lewis—remains influential today. Over time, the approach

has evolved: initial and relatively simple, yet counterexample-prone, reductions have

given way to increasingly sophisticated analyses of causation in terms of structural

equation models. This paper argues that all extant counterfactual dependence analyses

of causation—including those in terms of structural equation models—are false. For

none correctly handle synchronic laws, which generate counterfactual dependence

without causal dependence.
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Introduction

MORE than half a century has passed since David Lewis’s seminal “Causation” (1973).
To this day, the project of analyzing actual causation in terms of counterfactual

dependence remains alive and, by many accounts, well. While the project encompasses a
variety of approaches, those approaches are widely regarded to be united by one common
principle. Here are Beckers and Vennekens (2017, p. 2, my emphasis):

“The currently most prominent approaches to defining actual causation are
those within the counterfactual dependence tradition, which started with Lewis
(1973a). All of these approaches take as their starting point the assumption that
counterfactual dependence is sufficient for causation, but not necessary (Hitchcock
(2001); Woodward (2003); Hall (2004; 2007); Halpern and Pearl (2005); Halpern
(2016); Weslake (2015) ...).”

The italicized principle is appealing. If I hadn’t hit the bullseye, I wouldn’t have won. If
my laptop didn’t have enough juice, I’d soon be sitting in front of a black screen. If you
weren’t reading this sentence, you wouldn’t know what it says. So, one concludes, my
hitting the bullseye causes my winning, my laptop’s ample charge causes its continued
operation, your reading the sentence causes your knowing what it says. Generalizing:

Sufficiency: Necessarily, if (c, e) is a suitable pair of actual events such that e
wouldn’t have occurred if c hadn’t occurred, then c causes e.

The “necessarily” modal witnesses the fact that counterfactualist reductivist consider the
sufficient condition part of a definition of causation. The restriction to “suitable” event
pairs, meanwhile, fends off otherwise easy counterexamples to the principle. For example,
my hitting the bullseye doesn’t cause my hitting the board’s center circle—they are the
same event. Yet if I hadn’t hit the bullseye, I wouldn’t have hit the board’s center circle.
One standard requirement on “suitability” is therefore that c and e be “distinct” events,
meaning here that neither is a part of the other, and that neither’s occurrence logically
entails the other’s occurrence (cf. Lewis (1973; 1979)). We’ll soon see other suitability
requirements.

First we have to deal with another class of easy counterexamples. Counterfactual
conditionals are notoriously context-sensitive. Lewis (1979, p. 458) famously distinguishes
between “standard” and “backtracking” contexts: suppose that earlier today you returned
Susy’s book, as you promised you’d do. Given that Susy is known to take promises
seriously, the following conditional seems true:
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(1) If I hadn’t returned the book to her today, Susy would be disappointed in me.

Given (1), Sufficiency entails that your returning the book was a cause of your staying in
Susy’s good graces. So far so good. But now consider that you’re extremely reliable and
honest, known to never break a promise. With this in mind, you might have reasoned as
follows:

(2) If I hadn’t returned the book today, that would have been because Susy and I agreed
on a later return date to begin with. So Susy wouldn’t have been disappointed in me.

You could reasonably assert either (1) or (2), but never their conjunction. This indicates
a context shift between (1) and (2). Following Lewis (1979), call the interpretation of the
conditional triggered by (1) the “standard” interpretation and the that triggered by (2) the
“backtracking” interpretation. Now, given (2), Sufficiency entails that your returning the
book today is a cause of your agreeing on today as the return date. But that’s absurd: you
have no such retrocausal powers. For this reason, it’s important that the conditional in
Sufficiency always be evaluated on its standard interpretation.

This paper argues that Sufficiency, and those counterfactualist approaches which rely
on it, face an existential threat: the possibility of synchronic laws. These are laws relating
simultaneous distinct events.1 In Section 1, I explore previous challenges to Sufficiency
and why, despite them, versions of Sufficiency have endured. In Section 2, I then provide
two examples of synchronic laws: the first is Gauss’s law of classical electrodynamics; the
second involves constraints imposed by closed time-like curves on their pasts. I argue that
each undermines even weak versions of Sufficiency. Section 3 argues that this immediately
rebuts several reductivist theories, including Lewis (1973a) and Hall (2007). In Appendix
A, I prove that, on the standard counterfactualist reduction of structural equations (due to
Hitchcock (2001)), all prominent structural equation accounts entail Sufficiency. In Section
4, I conclude that all extant counterfactualist reductions of causation are false.

1 Previous Arguments Against Sufficiency

Sufficiency has faced previous challenges. Some have argued that omissions aren’t causes
(e.g. Beebee, 2004). The pressure is especially acute for far-flung omissions: Julius Caesar’s
failure to water my plant isn’t a cause of the plant’s death, yet my plant’s death arguably
counterfactually depends on it: if he had watered it, it wouldn’t have died. In reply, the
Sufficiency lover may bite the bullet, while trying to blunt its impact in various ways:

1Relativistically speaking: space-like separated distinct events.
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she might attempt to partially reduce omissions to “positive” events, i.e. commissions
(Bernstein, 2014), or to explain the appearance of non-causation as mere infelicity (Schaffer,
2005). But, failing that, she can retreat and strengthen her notion of “suitability”: she may
stipulate that an event pair is suitable only if its first element is a positive event.2

A demand for proportionality in causation poses another challenge to Sufficiency.
I greet my neighbor loudly, and she startles. My greeting loudly causes the startle, but
my greeting simpliciter doesn’t—my neighbor isn’t that jumpy. Yet, if I hadn’t greeted
her simpliciter, my neighbor wouldn’t have startled. So counterfactual dependence isn’t
sufficient for causation. One might resist this line by reinterpreting the demand for
proportionality: one might appeal to pragmatics, insisting that mentions of “A causes
B” tend to carry an implicature that A is a maximally specific cause of B. Or one could try
to separate causation from explanation and shift the burden of proportionality over to
the explanatory side (cf. Weslake (2017)). But, failing that, the Sufficiency advocate can
retreat and strengthen her notion of “suitability”: she may stipulate that suitable event
pairs consist of proportional events.

A third challenge emerges from David Lewis’s own semantics for counterfactuals in
deterministic worlds. On his miracles-based semantics, intended to model the “standard”
resolution of the counterfactual conditional, the near past is still counterfactually different.
According to Lewis, counterfactual antecedents are preferentially brought about by small
miracles (cf. (Lewis, 1979)), but small miracles need time to snowball into big change. So,
where antecedents dictate big differences to actuality, they must include a significant delay
between the occurrence of the miracle and the antecedent event—a delay during which
the counterfactual world differs from actuality. Bennett (2003) calls this delay a “ramp”.
The need for counterfactual ramps yet again raises the specter of retrocausation.

To illustrate by example: you throw a ball at me; I notice just in time and catch it. If I
hadn’t caught the ball, surely that wouldn’t be because at the moment of impact a miracle
instantly twisted my arm, missing the ball. Instead, some macroscopic change would
have occurred—perhaps I would have noticed the ball only later, or you threw it a littler
harder, or a gust of wind deflected the ball outside of my reach. According to Lewis, any
of these changes would be brought about by a small miracle—e.g. changes in neuronal
firing patterns, or microscopic meteorological changes—which subsequently needs time to
effect the big change. But surely my catching the ball causes neither my actual neuronal
firing pattern nor the actual earlier atmospherical state.

Lewis (1979) offers a response. Sufficiency says that c causes e if ¬O(e) holds in all clos-

2This restriction could also be subsumed under a ban on “overly disjunctive” events, as e.g. (Lewis,
1986b, p. D) discusses; see below.
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est worlds where ¬O(c). But merely asserting ¬O(e) leaves much undetermined:typircally
there’s a myriad of ways in which e might fail to occur. Lewis’s hope is thus that ¬O(e)
leaves open the specific content of the counterfactual ramping period:

“[W]e should sacrifice the independence of the immediate past to provide an
orderly transition from actual past to counterfactual present and future. That is
not to say, however, that the immediate past depends on the present in any very
definite way. There may be a variety of ways the transition might go, hence
there may be no true counterfactuals that say in any detail how the immediate
past would be if [some given event hadn’t occurred].”3 (Lewis, 1979, p.463)

This response works for our example. As we saw, there are all sorts of reasons I might not
have caught the ball—heightened alertness, a harder throw, an altered wind pattern. The
hope is that, for any actual positive event e∗ preceding c, there is a closest possible way of
filling out the ramping period in which e∗ still occurs. Then ¬O(c) �→ ¬O(e∗) is false for
any such e∗.4

Vihvelin (1995) identifies two kinds of threats to this response. The first arises when the
antecedent event is an omission—an omission’s negation typically entails definite ramping
period. But this is no threat to the weakening of Sufficiency to positive events. The second
threat stems from overly detailed past events. Let c be my catching the ball at t, for some
time t, and let e be the totality of all events during some open time interval bounded, to
the future, by t. Given that e’s non-occurrence would require a miracle to occur shortly
before t, we have ¬O(c) �→ ¬O(e). But my catching the ball doesn’t cause e.

One possible response follows Lewis (1986a) in banning overly “fragile” events. Those
are events with extremely detailed essences—intuitively, events which could have very
easily failed to occur. Lewis’s justification for the ban is that our standard way of denoting
event propositions, “standard nominalizations”, isn’t nearly detailed enough to pick
out these events. Inspired by Lewis’s move, the Sufficiency advocate may strengthen
“suitability” yet again, additionally requiring that e not be overly fragile.

3The original quote ends with “...if the past were different”. This isn’t what Lewis needs here and is also
less plausible than my substitution. Sometimes that antecedent may pick up on the non-occurrence of an
omission, and thereby engender a rather specific immediate past. For example: “I didn’t do my homework
yesterday. In a different past—i.e., if the past had been different—I would have done it, and thus my teacher
would have lauded me just now.” (The original quote thus wouldn’t permit the first response to Vihvelin’s
(1995) objection below.)

4The hope requires a counterfactual semantics which permits multiple maximally close antecedent worlds.
On a semantics like Stalnaker’s (1968), in which a given counterfactual antecedent selects a unique closest
antecedent world, there’s a unique closest ramping period. In this case some positive event e∗ preceding c
will satisfy ¬O(c) �→ ¬O(e∗). In response, the Sufficiency advocate should insist that, even though the
conditional is true, it’s not determinately true. She may then retreat to a weakened version of Sufficiency
which requires determinate truth of ¬O(c) �→ ¬O(e∗) for causation.
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Lewis’s response is unlikely to convince everyone: it doesn’t conclusively show that all
non-occurrences of robust positive events permit eclectic swaths of equally-close ramping
periods. Moreover, Lewis doesn’t independently characterize the distinction between
the robust and the fragile. Some counterfactual reductivists have therefore proposed an
alternative: retreating to a variant of Sufficiency where the counterfactual conditional
doesn’t require ramping periods. I’ll explain this alternative strategy in the following
footnote.5 Those in the structural equations tradition might have yet other means at their
disposal to solving the ramping problem, e.g. via judicious choices of variables. My own
arguments will work for any such restrictions on variable choice.

Now, a fourth challenge results from rejecting counterfactual miracles, in favor of a view
on which counterfactual worlds have the same laws. If the laws are deterministic, this
requires the counterfactual worlds to be different at all times, including past times (cf.
Bennett, 1984; Loewer, 2007; Albert, 2015; Dorr, 2016). Now, in a world like ours, with
continuous laws, the past will generally only have to differ microscopically, until very close
to the antecedent’s time (cf. Dorr (2016)). Still, ubiquitous retrocausation is implausible
even if the effects are microscopic. In my view, the cleanest way for the Sufficiency
advocate to circumvent the problem is not to get entangled in it to begin with: instead,

5 Glynn’s (2013) account is an example of this. It’s a combination of two ideas. First, it stipulates a
technical meaning of the counterfactual conditional—let’s denote it �→—according to which, when A is a
proposition purely about particular matters of fact at the instant (or brief interval) t, “A �→ B” is evaluated
using only miracles at t. That is, A �→ B is true iff B is true at all worlds closest among those where (i) A is
true, (ii) no miracles occur outside of t, (iii) everything prior to t is as it actually is, and (iv) everything after t
evolves according to the actual laws of nature. Second, say that c causes e if there is some truth T solely about
t such that ¬O(c) and T are metaphysically compossible and ¬O(c) ∧ T �→ ¬O(e). Intuitively, the role of T
is to suppress any unwanted effects which the ¬O(c)-realizing miracle would otherwise bring about—viz.
consequences which affect e via causal routes bypassing c. Generally, T requires a highly complex miracle.
For example, my bus is stuck in traffic, and my being on the bus right now (c) causes my being late to the
meeting (e). Moreover, if I wasn’t on the bus right now, I’d be on my bike (¬O(c)), speeding through grid-
locked traffic, and arriving on time. On the technical meaning of the counterfactual conditional introduced
above, if I was on my bike right now, this would be because a miracle had quasi-instantly teleported me from
the bus onto the bike. But such a miracle would have all sorts of undesired byproducts, affecting my arrival
time independently of my newly acquired ability to cycle there. For concreteness, suppose the miracle would
leave me extremely startled—so much so that I’d crash, thus not arriving on time. Still, we want to say that
my being on the bus (c) causes my being late (e). Glynn’s account achieves this as follows. Some T entail
that I’m calm and not disoriented, thus negating the unintended consequence. Moreover, Glynn makes it
plausible that we can find a T to do this for all unintended consequences (including consequences that arise
from the miracles needed to bring about the various suppressors). If so, then if ¬O(c) ∧ T, then I’d arrive on
time despite the sudden teleport. The account thereby secures the desired causal relation (that my being on
the bus causes my being late) without the need for counterfactual ramping periods. The idea would then be
to change Sufficiency as follows:

Sophisticated Sufficiency: Necessarily, if (c, e) is a suitable pair of actual events such that, for
some truth T, ¬O(c) ∧ T �→ ¬O(e), then c causes e.

Importantly, however, Sophisticated Sufficiency still falls to my counterexample, as I’ll explain in fn. 30.
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they should stick with Lewis’s miracles-based semantics (or variants of it which avoid
ramping periods). Indeed, this is what the counterfactual dependence tradition in fact
does (cf. Lewis (1979), Hitchcock (2001), Hall (2007), and Glynn (2013)).

(Alternatively, the Sufficiency advocate could strengthen her notion of “suitability”,
restricting it to pairs whose second element (the putative effect) is a macroscopic event.
The downside is that this is vulnerable to cases with non-continuous laws, where any
counterfactual differences would, as a matter of law, have to be macroscopic. For an easy
example, imagine a universe with Newtonian gravity but discretized masses. In response,
the Sufficiency advocate could argue that the case for a fixed-law counterfactual seman-
tics is weaker in such worlds, because one of its key motivations—that only microscopic
adjustments to the past are required to accommodate a counterfactual antecedent—no
longer applies. Be that as it may—since miracle-based semantics are standard within the
counterfactualist tradition, I’ll just stick with those.)

A final constraint on suitability—obvious enough that it is often left implicit—is that
(c, e) is suitable only if some counterfactuals with antecedent ¬O(c) are false. On the
standard view, this is just to say that c’s occurrence is metaphysically contingent. Without
this constraint, Sufficiency plausibly makes causation too cheap: some future space-
time region’s being identical to itself—an event whose non-occurrence plausibly makes
counterfactuals with it as antecedent vacuously true—doesn’t cause (say) the Big Bang.6

Sufficiency emerges weakened but still makes substantive predictions: the canonical
examples of causation, which also motivate counterfactual reductions, tend to involve
positive, proportional, not overly fragile, and contingent events—stone throws, hurling
boulders, hurricanes, poisonings, and the like. So, the proponent of Sufficiency might
still think of herself as occupying a true and substantive position. Unfortunately, as I’ll
argue, that appearance is illusory: even in its weakened form, Sufficiency is false. This is
because, in the presence of synchronic laws, counterfactual dependence fails to track causal
dependence.

6Alternatively, one could include the anti-vacuity constraint not as a restriction on suitability, but as
a restriction on what counts as an event. But this would render pairs (c, e) ineligible even when only e’s
non-occurrence is vacuity-inducing—I see no good reason for demanding this extra strength.
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2 Synchronic Laws

2.1 Warm-Up: Mirror World

Before I get to the two main examples, I’d like to start with a particularly simple toy
example, illustrating the concept of a synchronic law. Due to its toy nature, the present
case may well raise some objections—objections which I’ll point out, and which (I argue)
won’t arise with the main examples.

Imagine a variant of John Hawthorne’s (2007) Mirror World: a world split into two
halves which are, by law, mirror images of each other.7

Mirror Law: At all times, the matter configuration in one half is a mirror image
of the matter configuration in the other half.

Since it relates things at the same time, I call a law like Mirror Law synchronic.
Additionally, suppose each side evolves according to some local dynamical law, say

Newton’s Second Law supplemented by a local force law. (As it relates things at different
times, we may call Newton’s Second Law, and dynamical laws in general, diachronic.)

Here is a simple argument against Sufficiency. Suppose I clap my hands at time t
(and so does my mirror image). First premise: since Mirror Law is a law, the following
counterfactual is true:

(M) If I hadn’t clapped my hands at t, my mirror image wouldn’t have clapped
at t either.

Given (M), Sufficiency implies that my clapping at t causes my mirror image’s clapping
at t. But—second premise—my clapping at t doesn’t cause my mirror image’s clapping at
t. Rather, my mirror image’s clapping at t is already fully caused by events in its (local)
past (via Newton’s Second Law), and there is no causal overdetermination. Final premise:
Mirror World is possible. So, counterfactual dependence, even between suitable and
occurrent events, isn’t necessarily sufficient for causation. Sufficiency is false.

In conversation, I’ve encountered three different objections to this case. The first denies
premise three: Mirror World is not possible. The most common version of this views notes
that, given Newton’s Second Law, Mirror Law is entailed by symmetric initial conditions,
and that the latter is merely accidental, not a law, and that this implies that Mirror Law isn’t
a law. The second is directed at premise two: even if Mirror Law is a law, this could only
happen if there is non-local causation. Its status as a law must be enforced by some sort of

7The difference to Hawthorne’s example consists in the nomic necessity of the connection between the
sides. This variant is also discussed by Luzon (2024).
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Figure 1: A 2D sketch of (three-dimensional) GAUSS

spooky action at a distance. The third objection consists of a generally dismissive attitude
toward toy examples: violating any one of the premises shouldn’t count against a theory,
because our intuitions about toy examples are unreliable or empirically inaccessible or
otherwise unimportant. Spoils to the victor!

There are plausible rejoinders to each objection.8 But I needn’t press those further.
None of them arise in the next example.

2.2 Gauss’s Law

Consider a world—GAUSS—with a single stationary proton at spatial location x.9,10 Besides
the particle, there is a static electric field, radiating outward from the proton—see fig. 1 for
a 2D sketch. Everything is governed by Maxwell’s laws of electrodynamics. Otherwise the
world is empty.

Maxwell’s laws entail the following synchronic law:

Gauss’s Law: At all times, the electric flux through the boundary of any (spatial)

8Regarding the first: even if Mirror Law wasn’t a law, wouldn’t the counterfactual (M) still sound
good? The second: this response would have to admit not only ubiquitous causal overdetermination but
plausibly also ubiquitous causal cycles—each side causes the other. Also, Gauss’s Law (see below) shows
that synchronic laws can exist without action at a distance. The third: plenty of highly influential cases are
highly “exotic”, in any ordinary sense of the word—think of Putnam’s (1973) Twin Earth, Thomson’s (1971)
violinist, Chalmer’s (1996) p-zombies, Elga’s (2000) Sleeping Beauty, Hawthorne’s (2007) own mirror world.
I find it doubtful that there are principled criteria by which to dismiss (my) Mirror World as too remote
without simultaneously dismissing much of the most influential work in contemporary philosophy. Perhaps
you’re ready to take that step—many won’t.

9In the following, any references to spatial location, time, sphericalness, isotropy, and other Lorentz
non-invariant properties, are relative to a fixed reference frame co-moving with the proton.

10To avoid discontinuity in the resulting electric field, assume that the proton has some very small but
non-zero spatial extent and that the electric field density falls off continuously near x.
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volume is proportional to the total electric charge enclosed within the volume.

Intuitively, the electric flux through a boundary is the difference between how much
electric field, at the boundary, points out of the enclosed volume, versus how much points
into the enclosed volume. It supervenes entirely on the electric field configuration at the
boundary: no change in electric flux through a boundary without changing the electric
field somewhere on the boundary.11

Gauss’s Law now says that, if the total electric charge inside some volume is positive—
that is, there is more positive electric charge inside the volume than negative electric
charge—then the electric flux through the volume’s boundary is positive. Equally, if the
total electric charge is zero—positive and negative electric charge are exactly balanced—the
electric flux is zero. If it is negative, the electric flux is negative. Gauss’s Law requires that
the electric flux through the boundary “mirror”, as it were, the value of the total electric
charge within, just like Mirror Law requires that my counterpart’s actions mirror mine.

In addition to Gauss’s Law (and its analogue for the magnetic field) Maxwell’s laws
comprise two diachronic laws.12 They make it so that, in a Maxwellian universe, everything
is nomically determined by its local past—specifically, by (any spatial cross-section of)
its past light-cone. Intuitively, an event’s past light-cone is the union of all possible space-
time trajectories via which a material particle could reach the event in question.13One
implication of these laws (together with Gauss’s Law) deserves highlighting:

Charge Conservation: Electric charge is conserved—charge is neither sponta-
neously created nor annihilated.14

Here is our argument against Sufficiency. Pick some arbitrary time t, and some arbitrary
(hollow) spatial sphere S, at all times centered on the proton. The following counterfactual
is true:

(G1) If the proton wasn’t present at x at t, there would be no charged particles
at t.

11Mathematically, the electric flux through an oriented spatial surface is the integral, over the surface, of
the scalar product of electric field and the surface’s normal vector.

12They are Faraday’s Law—relating the magnetic field’s time derivative to the electric field’s curl—and
Ampère’s Law—relating the electric field’s time derivative to the magnetic field’s curl and the electric current.
The details won’t matter in the following.

13Throughout I’ll thus understand an event’s “light-cone” as a subset of the manifold, not its tangent
bundle; moreover I mean its solid light-cone—a 4D region—not the boundary of a 4D region. What I call
“past light-cone” physicists also commonly call “causal past”. In the present context, this terminology would
potentially be confusing.

14Formally, the net electric current through the boundary of any volume equals the (temporal) change in
electric charge inside the volume. This is an immediate consequence of Gauss’s Law and Ampère’s Law.
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(a) A charge-free solution to Maxwell’s
laws (2D sketch).

(b) Another charge-free solution to
Maxwell’s laws (2D sketch)

But Charge Conservation would still hold at all times after t. So, from (G1),

(G2) If the proton wasn’t present at x at t, there would be no charged particles
present at all times after t; in particular, S would enclose zero total electric charge
at all times after t.

Likewise, Gauss’s Law would still be true. So, from (G2):

(G3) If the proton wasn’t present at x at t, there would be zero electric flux
through S at all times after t.

See figs. 2a and 2b for sketches of two solutions with zero electric flux through S. Since
electric flux supervenes on electric field, in both cases the electric field is different from
actuality. (For the purpose of the argument, we needn’t settle here which of the two—if
any—is closest to actuality.)

Given (G3), Sufficiency implies that the proton’s presence at x at t causes the positive
electric flux through S at all times after t. But S was arbitrary here. In particular, if we
choose some time t+ after t, let S be so large that no light signal sent from the proton at x
at t could reach S by t+. It follows that the proton at t has faster-than-light causal influence
on the electric field at S at t+. But that’s false. So Sufficiency is false.

Let pG be the proton’s presence at x at t, and let eG be the electric flux through S and t+

being positive. In symbols, (G3) thus reads:

¬O(pG) �→ ¬O(eG).

The core of the previous argument can be validly expressed as follows (where the modali-
ties are metaphysical):

1G. If Sufficiency is true, (pG, eG) is a suitable pair of occurring events at GAUSS, ¬O(pG)�→¬O(eG)

in GAUSS, and GAUSS is possible, then pG causes eG in GAUSS.
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2G. (pG, eG) is a suitable pair of events at GAUSS.

3G. DependenceG: ¬O(pG) �→ ¬O(eG) in GAUSS.

4G. PossibilityG: GAUSS is possible.

5G. Non-CausationG: pG does not cause eG in GAUSS.

∴ Sufficiency is false.

Premise 1G follows from the fact that a necessary truth is true in all possible worlds. What
about Premise 2G? We’ve seen several demands the Sufficiency advocate might place on
“suitability”. pG and eG are certainly distinct, occurring as they do in separate spacetime
regions. They are also proportional to each other, both being simple configurations of
physically fundamental properties. Likewise, neither event is overly “fragile”: both the
proton’s being located at x at t and the electric flux through S at t+’s being positive are
specifiable by ordinary nominalizations (as we just did), and so aren’t “fragile” in Lewis’s
intended sense. More generally, particle locations and electric fluxes seem like prime
examples of physical facts we’d like to causally explain—any theory of causation which
excluded them would be seriously incomplete.

I’ll now turn to premises 3G – 5G.

2.2.1 Defending DependenceG

We’ve already laid out the positive argument for DependenceG: starting from (G1), we
appeal to Charge Conservation to get to (G2), and then via Gauss’s Law to (G3) (which
is what DependenceG says).

In conversations I’ve encountered three objections, two concerning the appeal to
Gauss’s Law in the last step, and one against the very first step, the assumption of (G1).
They all claim that I’m misconstruing what goes on in the counterfactual, proton-less
world. I’ll take them in turn.

The first objection holds that, if the proton wasn’t present at x at t, the electric field
would be 0 at x at t, but otherwise unchanged (except perhaps for some local smoothing).
Thereafter a sphere of vanishing electric field, centered on x, would expand at light speed.
This restores local counterfactual dependence, as the electric field outside of (t, x)’s future
light-cone would remain unchanged.

Now, the first thing to note is that, because there would be no charges after t, this
objection violates Gauss’s Law at all times after t. It thus posits an temporally infinite
counterfactual miracle, spanning t’s entire future. But the miracle’s infinity isn’t the
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Figure 2: The future of the universe if the proton is deleted at (t, x) and Gauss’s Law
suspended forever after.

problem. For DependenceG also requires an infinite counterfactual miracle, a spatial one:
to preserve Gauss’s law in the absence of charges, the electric field would have be different
from actuality at every spatial radius from x at t. Infinite miracles are required either
way. What’s still problematic, though, is that the counterfactualist tradition often explicitly
rejects miracles reaching beyond the antecedent’s time of occurrence. For example, Lewis
(1979) wants the counterfactual world, post antecedent, to evolve according to the actual
laws of nature. Glynn’s (2013) account even explicitly confines miracles to the antecedent’s
time of occurrence. So, a temporally infinite future miracle seems incompatible with
the letter of many counterfactualist approaches in a way that a spatially infinite miracle
doesn’t.

But there is a more devastating problem for the present objection: the envisioned
scenario—zero electric field at (t, x), with a sphere of vanishing field expanding at light-
speed thereafter—has no basis at all in Maxwell’s laws. Once we suspend Gauss’s Law—as
the counterfactual scenario demand— the remaining three Maxwell equations entail that
the electric field would simply be static forever after t. That is, with its configuration at t
being as in figure 2, it would maintain that configuration forever after t. To see this, one
has to dig into the equations, which I’ll do in the following footnote.15 So, the objection is
unmotivated.

15For the purpose of defining derivatives, let t be an (arbitrarily small) open interval. From the fact that
Charge Conservation holds at all times after t and the fact that there are no charges present in t, it follows
that there are no charges present at all times after t (cf. fn. 18); a fortiori, there is no electric current at any time
after t. Moreover, by hypothesis, the electric field is radially symmetric around x at all times, and hence
its curl vanishes at all times. Since the magnetic field vanishes prior to t, we thus have, by Faraday’s law
(curl(E) = − ∂B

∂t ) that it always vanishes. Hence, via Ampere’s law for vanishing current (curl(B) = ∂E
∂t ), the

electric field is static after t.
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This leads us straight into the second objection (also against the usage of Gauss’s Law
in the third step). What’s the problem with thinking that the electric would indeed be
static? After all, it would still avoid non-local counterfactual dependence: the electric field
outside of (t, x)’s future light-cone would be unchanged. Now, granted, it inherits the same
problems about future miracles as the previous objection does. But its conclusion can at
least be motivated from the remaining Maxwellian laws. Unfortunately, it is independently
problematic for the counterfactualist. For it rules out non-local counterfactual dependence
only at the price of ruling out virtually all counterfactual dependence. Outside perhaps
of a small neighborhood around x, the electric field is counterfactually invariant to the
proton’s presence. This makes it hard to see how a counterfactualist account of causation
could deliver the eminently plausible result that the proton’s presence at x at t is a cause of
the electric field in (t, x)’s future light-cone.16

Onto the third objection. It proposes to reject (G1) in favor of the following subjunctive:

(G∗1) If the proton wasn’t present at x at t, there’d be some positive charge
elsewhere at t.

One variant of this objection has the proton located somewhere else at t. Another variant
has it replaced by a tiny hollow sphere of positive charge, centered on x at t, and expanding
at light speed thereafter. (In this scenario, the sphere of vanishing electric field, expanding
at light speed, is consistent with Gauss’s Law.)

But (G∗1) already gives up the game for Sufficiency. For it entails

(G∗∗1 ) If the proton wasn’t present at x at t, it would not be the case that x’s
complement is neutrally charged everywhere at t.

From (G∗∗1 ) and Sufficiency (and the suitability of the relevant event pair17), it thus follows
that the proton’s presence at x at t causes x’s complement’s charge neutrality at t. But
that’s false—on Maxwellian electrodynamics, (subluminal) electric charges only affect
their future light-cones (see also 2.2.3). So, Sufficiency is false. 18

16Now, of course, everyone already concedes that counterfactual dependence isn’t necessary for causation.
But necessity violations occur specifically in cases of preemption or overdetermination—in cases where,
besides a given actual cause, there is a backup (actual or non-actual) cause, ready to cause the effect in the
absence of the former. The present case is not like that.

17The pair is (the proton’s being present at x at t, x’s complement’s being charge-neutral at t). This is
clearly suitable: the events are distinct, they are proportional to each other, the former is positive, and the
latter not overly detailed.

18There’s a technicality about the second step—from Charge Conservation to (G2)—worth addressing. If
t was a closed interval—e.g., a single instant—Charge Conservation wouldn’t have the desired implication:
in a world with charged particles at all times outside of t, and none at t, Charge Conservation could still
hold at all times outside of t. (Since diachronic laws involve temporal derivatives, for such a law to “hold”
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2.2.2 Defending PossibilityG

Maxwell’s laws of electrodynamics are clearly metaphysically possible (and possibly laws),
as is the existence of a single proton and a static electric field. Now, are these things also
compossible? A nomic reductivist might complain: from the perspective of a Humean best-
system account of lawhood—the most popular nomic reductivist approach—Maxwell’s
laws are too complicated to be laws at GAUSS. Due to its simplicity, the actual particle-
field configuration in GAUSS can be specified by a very simple system of propositions.
Such a system purchases much more strength than Maxwell’s laws for comparable or less
complexity.

But the Humean’s worries can be assuaged: simply add to GAUSS complex electro-
dynamical systems far, far away from our particle, with kinematics compatible with
Maxwell’s laws. The Humean will agree that, in this new world, Maxwell’s laws are laws.
Yet, the argument against Sufficiency goes through just as smoothly in the new world as
in GAUSS.

2.2.3 Defending Non-CausationG

Non-Causation reflects received scientific opinion on Maxwellian electrodynamics. Two
representative quotes, from standard textbooks, on Maxwellian electrodynamics:

“The displacement between causally related events is always timelike.” (Grif-
fiths, 1981, p. 531)

“[I]f any change takes place in one of the interacting bodies, it will influence
the other bodies only after the lapse of a certain interval of time. It is only after
this time interval that processes caused by the initial change begin to take place in the
second body.” (Landau and Lifschitz, 1994)

There is a powerful argument for the received opinion: similarly to Mirror World, the
actual electric field configuration over S at t+ is completely determined by (any spatial
cross-section of) its past light-cone—a light-cone doesn’t doesn’t contain the proton-at-t.
Thus, to deny Premise 4 would be to stipulate ubiquitous and particularly egregious causal

at a time means for it to be true in some open neighborhood around that time. But in the imagined world,
where t is closed, every time outside of t has an open neighborhood in which the temporal derivative of
charge density equals the current’s divergence—Charge Conservation holds everywhere outside of t.) To
remedy this, let t simply be a small open interval, rather than a single instant. Then Charge Conservation
holds “for all times after t” only if it holds in an open interval around t’s future boundary. Then, if t contains
no charges, its future doesn’t contain any, either. For convenience, I’ll continue to treat t as an instant in the
main text; but nothing substantive will hinge on this.
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overdetermination—particularly egregious, because theoretically costly (since non-local)
while at the same time explanatorily void.

2.3 Time Loops

So much for Gauss’s law. Our second example involves synchronic laws of a different
character, grounded in part in the world’s global topology. The topological feature in
question are time loops—roughly, trajectories through spacetime which travel back in time
to their starting point.19

Consider a world full of marbles, some grey and others white. Upon contact, the
marbles fuse with each other, and the shade of the outgoing marble (i.e., the fusion
product) is determined by the shade of the incoming marbles, as follows:

• If exactly an odd number of incoming marble are white, the outgoing marble is white.

• Otherwise, the outgoing marble is grey.

Outside of fusions, a marble’s shade is always preserved. Here is a 2D sketch of a world
abiding by these rules (with fusion events indicated by jagged bubbles):

We can construct a wormhole by starting with an ordinary spacetime and then “iden-
tifying” two regions of space at distinct times. More specifically, the resulting topology
is such that any trajectory which enters the earlier region from the past exits at the later
region, and any trajectory which enters the later region from the past exits at the earlier
region. A 2D illustration of both sort of processes:20

19In a relativistic spacetime, these are closed causal curves (where “causal” has its technical meaning here:
having everywhere either time-like or null tangent vector).

20Depending on the initial spacetime structure, the choice of spatial regions may be highly non-unique. For
example, if the underlying spacetime is Minkowskian, then, given any pair of (non-intersecting) duplicate
bounded space-like surfaces, any other pair of such surfaces with the same boundaries will generate the
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Now consider LOOP, a marble world with a wormhole, as follows:

That is, two white marbles approach the region between the wormhole ends. As they pass
the earlier end, a grey marble exits. The three marbles eventually collide, fusing into a
single marble, later entering the later wormhole end. Let’s introduce three binary variables
L, R, and M, to represent the shades of the left and right marble at t and the shade of
middle marble at t+, respectively (0 = grey, 1 = white). So, actually, L = R = 1 and M = 0.
The fusion law implies the following relationship (where φ abbreviates (1− φ)):

M = LRM + LRM + LRM + LRM (1)

same wormhole. In this case, the surfaces indicated in the sketch represent but one arbitrary choice among
the set of these pairs. To preserve manifoldness (and thus keep derivatives everywhere well-defined) the
regions’ (2D) boundaries are also removed.

16



The equation has exactly four solutions:

L R M

0 0 0

0 0 1

1 1 0

1 1 1

So, we have the following law:

Agreement Law: The left marble is white iff the right marble is white, and grey
iff the right marble is grey.

Relating distinct but simultaneous events, Agreement Law is a synchronic law.
Again, we have a straightforward argument against Sufficiency, as follows. Since

Agreement Law is a law, the following subjunctive holds:

(L) If the left marble had been grey at t (L = 0), the right marble would have
been grey at t (R = 0).

But the actual events (L = 1 and R = 1) clearly form a suitable event pair—they are
distinct, proportional, L = 1 is positive, and R = 1 isn’t overly detailed. So, by Sufficiency,
the left marble’s being white at t causes the right marble’s being white at t. But that’s false.
So, Sufficiency is false.

As a valid argument:21

1L. If Sufficiency is true, (L = 1, R = 1) is a suitable pair of occurring events at LOOP,
¬O(L = 1) �→ ¬O(R = 1) in LOOP, and LOOP is possible, then L = 1 causes R = 1
in LOOP.

2L. (L = 1, R = 1) is a suitable pair of occurring events at LOOP.

3L. DependenceL: ¬O(L = 1) �→ ¬O(R = 1) in LOOP.

4L. PossibilityL: LOOP is possible.

5L. Non-CausationL: L = 1 does not cause R = 1 in LOOP.

∴ Sufficiency is false.

Premise 1L again follows from the fact that a necessary truth is true in all possible worlds.
Premise 2L we’ve already covered. Let’s take the remaining premises in order.

21Where the modalities are again metaphysical.
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2.3.1 Defending DependenceL

DependenceL follows from the conjunction of three counterfactual conditionals:

(a) If L = 0, the positions and velocities of all particles at t would be the same.

(b) If L = 0, then the dynamics in t’s future would be the same.

(c) If L = 0, then the spacetime structure in t’s future would be the same.

By the identity rule (i.e., ` A �→ A) and Agglomeration,22 (a), (b), and (c) jointly entail

(d) If L = 0, then it would be that L = 0, the positions and velocities of all particles at t
would be unchanged, and the spacetime structure and dynamics in t’s future would
be the same.

But (d)’s consequent logically entails that R = 0. Hence:

(d) If L = 0, then it would be that R = 0.

Why believe premises (a)–(c)? Start with (a). The Sufficiency lover can’t plausibly hold
that, if L = 0, then some particle’s position or velocity would be different. For she would
then be committed to saying that particles’ current position or velocity are caused by L = 0.
If this includes particles other than the left particle itself, this reintroduces synchronic
action at a distance. In any case, it also runs into the familiar overdetermination problem:
particles’ positions and velocities are, at all times, fully causally explained by their past
positions and velocities. Particle shade, by contrast, has no causal influence on particle
kinematics.

Premise (b) follows from canonical formulations of a miracle-based semantics (a se-
mantics which, recall, Sufficiency advocates should and do embrace). On the canonical
formulation due to Lewis (1979)—as well as alternatives like Glynn (2013)—miracles are
confined to no later than the time of the antecedent.23 This is for good reasons: miracles
placed after the antecedent time can easily prevent relevant effects. In 1983, Stanislav
Petrov prevented a nuclear war by correctly judging an incoming missile warning to be a
false alarm. But we can easily generate a counterfactual world in which Petrov’s judging

22I.e. the rule (A �→ B) ∧ (A �→ C) ` (A �→ (B ∧ C)), part of any standard logic of counterfactuals,
including Lewis (1973b) and Stalnaker (1968).

23Now, Elga (2000b) has shown (in my view conclusively) that Lewis’s (1979) particular “hierarchy of
importance” fails to produce the desired asymmetry of miracles. So I’m focusing here on what Lewis
professes to rather than actually delivers—that is, I grant that there’s some, as yet unspecified, semantics
which produces the desired asymmetry of miracles. There is no analogous problem with Glynn’s (2013)
semantics, which confines miracles to exactly the time of the antecedent.
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otherwise nonetheless didn’t lead to nuclear war, e.g. by suppressing the signal from
nuclear button to missiles. If this world is among the closest button-pressing worlds, coun-
terfactual dependence accounts of causation will struggle to vindicate that Petrov’s correct
judgment prevented nuclear war. But it’s hard to see a principled case for permitting
post-antecedent miracles in LOOP, which doesn’t also carry over to this case.

The argument for Premise (c) is much the same, for topology changes have the same
history-altering power as miracles do—the signal in the nuclear cable could be swallowed
up by an aptly placed temporary singularity in the cable. Again, it’s hard to a principled
reason for avoiding this if post-antecedent topology changes are allowed in LOOP.

2.3.2 Defending PossibilityL

As far as worlds with time loops are concerned, LOOP is nothing special: if time loops
are possible, so is LOOP. But I think there are strong reasons to think that time loops are
(metaphysically) possible, and little reason to think they aren’t.

The strongest reason for the possibility of time loops is the existence of well-understood
spacetime models that contain closed time-like curves (time loops in the language of
Lorentzian manifolds). One way to articulate this is via positive conceivability—roughly,
conceivability that doesn’t merely involve the absence of contradiction but also the pres-
ence of a “positive picture” of the scenario (Chalmers, 2002). The positive conceivability-
possibility link holds that if a situation can be positively conceived, it is metaphysically
possible. (Emphasis on positive conceivability sidesteps counterexamples that trouble sim-
pler links; for instance, while the falsity of unprovable mathematical truths—Goldbach’s
conjecture, perhaps—may be naively conceivable, their truth is nonetheless necessary.)
Fully interpreted spacetime models24 with closed time-like curves are paradigm cases of
positive conceivability, presenting as they do precise and detailed positive pictures.25 This
is a strong positive reason for the possibility of time loops.

Moreover, initial worries against time loops have now been (to my mind) convincingly
refuted. One of the more influential worries has traditionally stemmed from paradoxes
involving ability. Let autoinfanticide be the act of a future self’s (permanently) killing her
own infant self. You can’t possibly commit autoinfanticide. But if time loops are possible,

24Such as Gödel (1949), Carter (1968), or van Stockum (1938).
25“Fully interpreted” is doing work here. For consider the debate on haecceitism in spacetime: do

diffeomorphically equivalent Lorentzian manifolds represent genuinely distinct possibilities? (See Norton,
Pooley, and Read (2023) for an overview of the debate) This question arises because it’s not fully settled
what swaps of mathematical points are supposed to represent. But the representational aspects of LOOP
which matter to us—the meaning of spacetime trajectories looping back to their origin—are fully interpreted.
That’s all we need.
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then (it seems) you can possibly commit autoinfanticide: simply travel back in time, gun in
hand. It would thus seem that, if time loops are possible, then a contradiction is possibly
true: that you both can and can’t commit autoinfanticide. So time loops aren’t possible.

I find the standard reply to this, due to Lewis (1976), convincing. Seemingly contradic-
tory yet individually acceptable utterances typically indicate a context shift. And so it is
here: what you “can” do is highly context-sensitive. To quote Lewis’s example: compared
to a (non-human) ape, I can speak Finnish: I have sufficiently developed articulators. But
compared to a Finnish speaker, I can’t speak Finnish: I don’t know any Finnish vocabulary
or grammar. Similarly, I can kill the infant, insofar as “I have what it takes”: I have a
loaded gun, I’m a good shot, etc. But I can’t kill the infant, considering that the infant is my
younger self. There’s no contradiction here: the second statement is evaluated on different
contextual facts.

Another objection concerns the “bootstrapping” aspect of time loops, with some argu-
ing that their inexplicability renders them impossible (Al-Khalili, 1999). However, as Lewis
(1976, p. 148) notes, inexplicability does not imply impossibility. The universe’s initial
state (if it has one), outcomes of stochastic processes, and God are all arguably inexplicable,
yet possible. For other versions of the no-bootstrapping worry, and rebuttals against them,
see also Effingham (2020, Ch. 5.2.2).

2.3.3 Defending Non-CausationL

Non-CausationL is motivated by a similar thought as its GAUSSian analogue: the right
particle’s shade at t is already fully causally explained by its shade at preceding times. To
posit additional causal influence from the left particle at t would be to posit ubiquitous
and egregious causal overdetermination.

The situation in LOOP adds an additional twist. If you deny Non-CausationL, you must
think that present causal facts hinge on what happens in the far future—in particular, if
the future contains time loops or not. This violates the following plausible constraint on
causation: what causes what up to a time is intrinsic to the world’s history up to that time.
More precisely:

Weak Intrinsicness: Let w and w′ be worlds with the same laws and with
identical histories up to time t.26 Then, for any events c and e in w occurring up
to time t, if it’s true at w that c causes e, then it’s true in w′ that c causes e.

26Here “identical” means numerically identical—i.e., w and w′ overlap up to t. One can also formulate
a version of this principle in terms of qualitative duplication, which will be friendly to those who think
that worlds don’t overlap. That principle will just be slightly more cumbersome to state, but the relevant
conceptual content the same.
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Others before me have defended similar principles. Hall (2004) proposes the following
stronger principle:

Intrinsicness (Hall): Let world w contain S, a “structure of events that consists
of e, together with all of its causes [in S] back to some arbitrary earlier time t”
(ibid., p. 239). Let c be some cause of e in w. Then, if w′ has the same laws as w
and contains S,27 then c causes e in w′.

Hall’s Intrinsicness principle is stronger because it merely requires that w and w′ share a
small subset of e’s history, namely e’s causes up to some prior time t.

As Hall (2007) elsewhere points out, his own principle produces awkward results
in certain canonical scenarios. But my weaker principle avoids these results. Consider
Switching: suppose a cable carries current to a lamp, where I have the option to flip a switch
that redirects the current via a different cable, to the same lamp. Clearly, my decision to
leave the switch where it is doesn’t cause the lamp to light—current would reach the lamp
either way. Yet in an identical world where the alternative cable is grounded (so only the
original cable connected to the lamp), my leaving the switch where it is does cause the
lamp to light. But since the lamp, left cable, and switch are identical in both worlds, and
constitute the causes of the lamp’s lighting in the alternative world, Hall’s Intrinsicness
principle wrongly predicts that my decision to leave the switch be causes the lamp to light.
Weak Intrinsicness avoids this error by taking into account the complete temporal history
of my decision, including how both cables are connected. Similar comments apply to cases
of Threat Cancelation (cf. Hall (2007)). So Hall’s cases undermine Intrinsicness but not
Weak Intrinsicness.

But if you accept Weak Intrinsicness, you should accept Non-CausationL. For consider
the following loop-free world, sharing LOOP’s history up to shortly after t:

In this world, L = 1 obviously doesn’t cause R = 1 But then it follows by Weak Intrinsic-
ness that L = 1 doesn’t cause R = 1 in LOOP either.

27Hall also considers further strengthenings, where w′ merely contains a structure “similar” to S. These
are, of course, subject to the same counterexamples as the current principle.
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3 Troubles for Counterfactualist Accounts of Causation

3.1 Against Lewis (1973a) and Hall (2007)

So, there can be determinate, non-causal counterfactual dependence, even between distinct
(and otherwise suitable) events. What does that mean for counterfactualist reductions of
causation? Any account which entails Sufficiency should be rejected. At least two such
accounts come to mind.

The most famous is Lewis (1973a). It says that c causes e iff there is a chain of actual
events d1, ..., dn with d1 = c and dn = e such that, for all i = 1, ..., n − 1, (di, di+1) is a
suitable event pair and ¬O(di) �→ ¬O(di+1). In particular, then, if ¬O(c) �→ ¬O(e) for
a suitable pair (c, e) of actual events, c causes e, and so Lewis’s account entails Sufficiency.
Our argument against Lewis’s account joins the ranks of many previous objections raised
against it—notably its failure to handle cases of late preemption and symmetric overdeter-
mination. However, our argument also applies to successor theories which handle these
cases.

One of these successors is Hall (2007). According to it, c causes e iff (c, e) is a suitable pair
of actual events and there is a “reduction” of the actual world in which c counterfactually
depends on e. It needn’t concern us what exactly a reduction is;28 what matters here is
that every world counts as a reduction of itself (Hall, 2007, p. 127). Thus we have again,
that, where (c, e) is a suitable pair of actual events, c’s counterfactually depending on e is
sufficient for c’s causing e—we have, that is, Sufficiency. So Hall’s (2007) account should
be rejected too.29,30

28Just to give a flavor: roughly, it’s a situation in which zero or more parts of the world that are actually in
a “non-default” (or “deviant”) state adopt their default state instead, while the rest is unchanged.

29In Hall’s defense, he is aware of these limitations, explicitly bracketing the case of causal loops (p. 114,
esp. fn. 6). But this doesn’t change the fact that his account isn’t a satisfactory analysis of causation.

30Earlier I discussed Glynn’s (2013) account (fn. 5). It’s easy to see that it, too, succumbs to our two
counterexamples. The counterfactual situation in GAUSS only has “late” miracles anyway—disappearing the
proton and changing the field values exactly at t—with everything before and after t evolving according to
the actual laws. So we straightforwardly have ¬O(pG) �→ ¬O(eG).

As for LOOP, the existence of a global time order is a prerequisite of Glynn’s account; so, for argument’s
sake, let’s grant that we can identify times across the two strands of spacetime. Moreover, shrink A to a
single point, so that it’s part of a single time t; and let B occur strictly after t. In evaluating A = 0 �→ . . .
according to Glynn, we then only consider counterfactual worlds with miracles at t. But in the closest
such world where A = 0 we must thus have B = 0: by stipulation, there is no miracle after B, and hence
A = 0 ∧ B = 1 would lead to contradiction. So we have A = 0 �→ B = 0, i.e. ¬O(L = 1) �→ ¬O(R = 1).
So Glynn’s account wrongly entails action at a distance in both GAUSS and LOOP.
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3.2 Against Model-Theoretic Definitions of Causation

In part due to ongoing issues with preemption and overdetermination, the traditional
Lewisian approach has nowadays largely been supplanted by more sophisticated analyses
of causation in terms of structural equations models (SEMs). An SEM uses variables to
represent sets of events and so-called “structural equations” to represent determination
relations between these events. Structural equations are expressions of the form pX :=
fX(Y1, ..., Yn)q (where X, Y1, ..., Yn are variables taking real values and fX is a function
from n-tuples of real numbers into real numbers). For any argument Y in which fX is
non-constant, the equation is interpreted to say that Y’s value (partially) determines X’s
value—hence the asymmetric symbol “:=”. Formally, an SEM is a pair (V , E) of a set of
variables V and a set of structural equations E in those variables. Given a set E , the set V
bipartitions into a set Vex of exogenous variables—those which aren’t determined by any
other variables in the model31—and into a set Ven of endogenous variables—those which
are determined by other variables in the model.

A few more standard definitions are in order. A solution of an SEM (V , E) is an
assignment of values to all variables in V that is consistent with the conjunction of all
equations in E . For any X ∈ V and value x, p(V , E) � X = xq then says that, in all possible
solutions of (V , E), X = x. Let p(V , E)(X ← x)q denote the SEM with variable set V\{X}
and the structural equation set E(X ← x) resulting from E by deleting X’s structural
equation (if any) and replacing every remaining occurrence of X by x. When Vex = v,
we say that C = c depends on E = e in M iff M(Vex\{C} ← v, C ← c) � E = e and
M(Vex\{C} ← v, C ← c′) � E = e′ for some c′ 6= c and e′ 6= e. So, intuitively, C = c
depends on E = e inM if manually setting E to some value other than e also changes
the value of C in the model. Finally, where (V , E) is an SEM with V, W ∈ V , a directed
path from V to W in (V , E) is a sequence of variables (X1, ..., Xn) such that X1 = V and
Xn = W and, for all i = 1, ..., n − 1, fXi+1 is non-constant in Xi—that is, fXi+1’s value
depends non-trivially on Xi’s value for some assignment of values to V\{Xi, Xi+1}.

Now, prominent SEM accounts of causation—e.g. Hitchcock (2001), Menzies (2004),
Halpern and Pearl (2005), and Halpern (2016)—entail that the following is a sufficient
condition for causation:32

31That is, exogenous variables appear on the left-hand side of a structural equation iff the equation’s
right-hand side is constant.

32Two nuances: Halpern and Pearl (2005) officially only provide a definition of endogenous variables’ being
causes. But this seems like a defect of their account: adequate causal models should faithfully capture also
exogenous variables’ causal relationships to the rest.

Not a defect is Menzies’s (2004) slight deviation from Sufficiency in Adequate Models: he evaluates
dependence-in-a-model by contrasting c specifically with its default alternative. As a result, his account
will entail only a weakening of Acyclic Sufficiency (see below)—one which additionally requires that c’s
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Sufficiency in Adequate Models: Necessarily, if (c, e) is a suitable pair of actual
events and variables X and Z represent alterations of c and e, respectively: c is
a cause of e if there is an adequate SEMM = (V , E) with X, Z ∈ V such that (i)
there’s a causal path from X to Z inM and (ii) Z = e depends on X = c inM.

“Adequate” is crucial here: to ground causal judgments, an SEM has to faithfully represent
the world. What does that mean?

First of all, an adequate SEM mustn’t assert outright falsehoods. Above we said that
structural equations say that the right-hand side partially determines the left-hand side.
“Determine” in what sense? Hitchcock (2001), Menzies (2004), Halpern and Pearl (2005, p.
847), and Weslake (2015) all have in mind counterfactual determination. Here is Hitchcock
(2001, p. 280) (see also Hitchcock (2007, p. 500)):

“[S]tructural equations encode counterfactuals. For example, [Z := fZ(X, Y, ..., W)]
encodes a set of counterfactuals of the following form:

If it were the case that X = x, Y = y, ... , W = w, then it would be the
case that Z = fZ(x, y, ..., w).”

Similarly, Menzies (2004, p. 822):33

“[The equation SH := ST] asserts that if Suzy threw a rock, her rock [would]
hit the bottle; and if she didn’t throw a rock, her rock [wouldn’t have] hit the
bottle.”

Similar quotes are found in Halpern and Pearl (2005, p.847) and Weslake (2015).
Where X = {X1, ..., Xk}, I write fZ(X1, ..., Xk) also as fZ(X) and, where additionally

x = {x1, ..., xk}, I’ll write X1 = x1 ∧ ... ∧ Xk = xk as X = x. (Henceforth let bold-face
letters denote sets of variables or values.) I’ll choose the convention where fZ is always a
function of all variables in V\{Z}, while generally being non-constant only in a select few of
those. (Hitchcock (2001, p. 281) chooses a different convention, where fZ is a function only
of those variables in which it is non-constant. Philosophically this makes no difference,

non-occurrence is default. But this won’t affect our argument: the absence of a proton is plausibly default in
the requisite sense, as are both a marble’s being white and a marble’s being grey. So, for simplicity, I’ll ignore
this nuance in the following.

Finally, to see that Hitchcock’s (2001, p. 287, 290) proposal entails Sufficiency in Adequate Models, note
that a directed path 〈X, Y1, ..., Yn, Z〉 is “weakly active” inM if Z depends on X inM (Hitchcock, 2001, p.
290). (There are merely some terminological differences: his “appropriate” is my “adequate”, and his “causal
route” is my “directed path”.)

33Curiously, Menzies uses indicative conditionals here, even though he means them to be “counterfactuals”.
I’ve thus substituted the subjunctive form.
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but it turns out that Hitchcock’s convention would significantly complicate the notation,
especially in the proofs of the Appendix.)

The demand thatM = (V , E) be true is then just the following demand: whenever
[Z := fZ(V\{Z})] ∈ E , then for all values v of V\{Z},

V\{Z} = v �→ Z = fZ(v).

Moreover, an adequate SEM is supposed to be exhaustive: it should contain a structural
equation for every variable in the model. (Recall that, as we’ve defined it, exogenous
variables are those whose structural equations have constant right-hand side.) Here is
Hitchcock:34

“By the same token, [Z’s equation] in E must always include as arguments any
variables in V upon which Z counterfactually depends, given the values of
the other variables. If, for some x, x′, y, z, ..., w, fZ(x, y, ..., w) 6= fZ(x′, y, ..., w),
then the value of Z does depend upon the value of X, and [ fZ is non-constant
in X]. The correct equation for Z can be arrived at by expressing the value of
Z as a function of all other variables in V”; then fZ will be constant in “those
variables whose values are redundant given every assignment of values to the
other variables.” (p. 281)

This demand for exhaustiveness is just the converse of the conditional at the start of this
paragraph; putting them together, we get the following biconditional: [Z := fZ(V\{Z})] ∈
E iff, for all values v of V\{Z}, V\{Z} = v �→ Z = fZ(v).

As a final condition on adequacy, the counterfactualist should require that all pairs of
variables in V be suitable and that all value assignments to V are metaphysically possible.35

If both of these things are the case, say that V is suitable.

Counterfactual Adequacy:36 Necessarily,M = (V , E) is adequate only if: V is

34Given his convention, his expression “Z = fZ(Y, ..., W) is not in E” means what, on my convention, “ fZ
is non-constant in X” means. For the same reason, we translate his “and then eliminating those variables...”
as “ fZ will be constant in those variables....”

35Specifically, what matters is (the weaker demand) that all value assignments to any |V| − 1-element
subset of V can serve as antecedents in non-vacuous counterfactuals.

36It’s worth noting that this notion of adequacy immediately satisfies the additional minimality condition
Hitchcock (2001, p. 280) lays out:

“Equations in E must always be written in minimal form: [if fZ is the right-hand side of Z’s
structural equation and] for all values x, x′ of X and v of V\{X, Z}, fZ(x, v) = fZ(x′, v), then
the value of Z does not depend upon the value of X at all” (p. 280, notation adjusted).

For if, for all x, x′, v, fZ(x, v) = fZ(x′, v), then, by the left-to-right direction of Counterfactual Adequacy:
for all x, x′, z, if X = x ∧ V\{X, Z} = v �→ Z = z, then X = x′ ∧ V\{X, Z} = v �→ Z = z.
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suitable and, for all Z ∈ V , [Z := fZ(V\{Z})] ∈ E iff for all values v of V\{Z},

V\{Z} = v �→ Z = fZ(v).

In the Appendix I prove that, given Counterfactual Adequacy, Sufficiency in Adequate
Models entails that counterfactual dependence is sufficient for causation in the absence of
cycles.37 That is, Counterfactual Adequacy and Sufficiency in Adequate Models jointly
entail the following principle:38,39

Acyclic Sufficiency: Necessarily, if (c, e) is a suitable pair of actual events, X and
Z are variables representing alterations of c and e, respectively, and there is an
adequate, acyclic SEM including X and Z: if e wouldn’t have occurred if c hadn’t
occurred, c causes e.

Acyclic Sufficiency entails that, if there’s any adequate acyclic model in GAUSS whose
variables represent alterations of the proton’s presence at x at t and of the electric flux’s
being positive at S at t+, then the former causes the latter. But there better be such
models: otherwise it’s hard to see how to avoid the distrastrous conclusion that there are
ubiquitous, genuine causal loops in GAUSS. Thus, all prominent SEM accounts of causation
are plausibly committed to the false conclusion that the proton’s presence at x at t causes
the electric flux’s being positive at S at t+.

Note that, since Counterfactual Adequacy merely posits a necessary condition for
adequacy, this argument cannot be avoided by further strengthening adequacy. In particu-
lar, no additional demands on the richness of an SEM—how many variables it ought to
contains, or how fine-grained their values ought to be—will help.

In contrast to GAUSS, LOOP plausibly does contain causal loops. Rich enough SEMs—
namely whose variable sets contain at least two events within the loop region—will thus
generically be cyclic. Since Acyclic Sufficiency only concerns the predictions of acyclic

37The proof assumes CEM—a natural assumption to make for SEM reductions of causation in the absence
of cycles.

38Given Counterfactual Adequacy, an explicit demand for (c, e)’s suitability is technically redundant—I’ll
still include it hear for easier comparison with the other principles.

39Acyclic Sufficiency is clearly weaker than full Sufficiency. Do Counterfactual Adequacy and Suf-
ficiency in Adequate Models also entail full Sufficiency? A reasonable assumption is that any pair of
variables representing alterations of suitable events can be embedded in an adequate SEM. If so, then the
only obstacle to full Sufficiency is the requirement of acyclicity. If and how one might dispense with it,
I don’t (yet) know. The answer presumably depends on one’s preferred SEM account of causation in the
presence of cycles—I shall leave this to future work. For now let it be noted that Acyclic Sufficiency does
its job for GAUSS. In the case of LOOP where, plausibly, cyclic models are adequate, we can independently
confirm that Counterfactual Adequacy and Sufficiency in Adequate Models misfire.
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SEMs, one might hope that, by positing additional richness constraints on adequacy, one
might be able to avoid trouble in LOOP.

Alas, the hope is in vain: while I don’t have a general theorem extending to the cyclic
case, it’s easy to see that Counterfactual Adequacy and Sufficiency in Adequate Models
still entail the troubling conclusion for LOOP. For consider the modelM = (V , E) with
V = {L, R, M, N}, where N registers the middle particle’s shade shortly after the collision.
Now, the only nomically permitted solutions are as follows:

L R M N

0 0 0 0

0 0 1 1

1 1 0 0

1 1 1 1

Thus the counterfactual dependence of R on L obtains regardless of the values of M and
N. In particular, if L = 0 �→ R = 0, then also

L = 0∧M = N = 0 �→ R = 0. (2)

But since actually L = R = 1 and M = N = 0, we have, by And-to-If,

L = 1∧M = N = 0 �→ R = 1. (3)

So, by Counterfactual Adequacy, conditions 2 and 3 entail that fR depends on L—
specifically, fR(L, M, N) = L. In a similar fashion, we’ll obtain fN(L, R, M) = LRM +

LRM + LRM + LRM and fM(L, R, N) = N. It follows that M(L ← 0) � R = 0 and
M(L← 1) � R = 1. Note that neither M nor N are exogenous inM. So, by Sufficiency
in Adequate Models, L = 1 is a cause of R = 1 in LOOP.

Now, it’s easy to convince oneself that adding additional variables won’t substantively
change the result. Counterfactual Adequacy ensures that whatever variables represent
the shades of the left and the right particle just before the collision depend on each other
in the resulting model. So, notwithstanding the lack of general theorem for the cyclic case,
we see that SEM reductions of causation yield the wrong result in LOOP, no matter how
rich we require adequate models to be.40

40Gallow’s (2016) more sophisticated counterfactualist theory of adequacy also fails in cases of synchronic
laws. Let φ be the selection function for your favorite semantics of counterfactual conditionals, mapping
proposition-world pairs into sets of worlds. For any world w and any given set of variables X, let the X-closure
of w under φ be the closure of {w} under the set of functions {φ(X′ = x′, ·)|X′ ⊆ X and x is in the range of X},
i.e., the smallest set W such that: (i) w ∈W and (ii) if w′ ∈W and x′ is in the range of some subset X′ ⊆ X,
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3.3 No Easy Fix

As we saw in Section 1, earlier arguments against Sufficiency could be answered by
retreating to weaker, still substantive, versions of the principle. Is a similar strategy
available for defusing the threat of synchronic laws? I’ll discuss two attempts at this
strategy here, both of which fail.

First, one might hope to exclude counterfactual dependencies due to synchronic laws
by only considering dependencies between non-synchronic events. Specifically, consider the
following weakening of Sufficiency:

Sufficiency∗: Necessarily, if (c, e) is a suitable pair of occurring events such
that e wouldn’t have occurred if c hadn’t occurred, and e occurs after c, then c
causes e.

Unfortunately, Sufficiency∗ still fails, because synchronic counterfactual dependencies
can still induce dependencies between non-synchronic events. Consider the following
modification of GAUSS:

Case. Measurement: A measurement apparatus is placed somewhere along S
at t+, recording the local electric flux through S at t+. It transcribes this result
(“positive”) on a piece of paper. Remaining at rest, the piece of paper will
eventually be located inside of (t, x)’s future light-cone, say at time t++.

See fig. 3a for a sketch. For concreteness, let’s assume that, if the proton had not been
located at x at t, then the electric field would have been zero everywhere on S at t+.41 So, if
the proton hadn’t been present at x at t, then the flux through S at t+ would have been

then φ(X′ = x′, w′) ⊆W. Intuitively, the X-closure of w under φ is exactly the set of worlds you can reach from
w by repeatedly subjunctively supposing X′ = x′—i.e., taking conditionals of the form X′ = x′ �→ ...—where
X′ is a subset of X. Now, according to Gallow, given a selection function φ, an adequate SEMM = (U, V, E)
contains a structural equation (V := fV(V\{V})) ∈ E only if the (ordinary) equation V = fV(V\{V}) is
true throughout the actual world’s V\{V}-closure under φ. The “only if” is strengthened to a biconditional if
additionally all variables in U are mutually counterfactually independent throughout that closure (formally,
if no SEM with the same variable set but “strictly more” determination relations (i.e., directed causal paths)
satisfies the aforementioned property).

According to this semantics,MG, if it is to be an adequate SEM for GAUSS, must contain the structural
equation E := P, where E represents positive electric flux at S at t+ and P the proton’s presence at x at t.
However many subjunctive suppositions of the form P = i �→ . . . , for i = 0, 1, are nested, Gauss’s law
would still hold at all times after t. Similarly forML: however many subjunctive suppositions of the form
L = i �→ . . . , for i = 0, 1, are nested, the dynamics and topological structure downstream from L and R
would be unchanged and so we’d still have that L = R. So Gallow’s theory of adequacy does no better than
Hitchcock’s when faced with synchronic laws.

41Now, recall from our discussion of Gauss’s Law that there are zero-flux solutions with (everywhere)
non-vanishing electric field. What if some such scenario is among the closest ¬O(pG)-worlds? Then it’ll
not be guaranteed that any particular device in Measurement would read a different value in the proton’s
absence. We can address this problem with a mild complication of the case: place a measurement apparatus
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(a) A sketch of the situation in Measurement.

(b) A sketch of the same situation had the proton not been present at
x at t.

Figure 3

zero, and hence the paper at S at t+ would have read “zero”; but then also the paper at S
at t++ would read “zero”—see fig. 3b. By Sufficiency∗, the proton’s presence at x at t thus
causes the paper’s reading “positive” at t++. But that’s false—the paper is a record of a
measurement that took place at t+, outside of (t, x)’s future light-cone!

(An analogous counterexample can be constructed for LOOP: record the right particle’s
shade at t on a piece of paper. Assuming the underlying spacetime structure is classical
(with an absolute notion of simultaneity), the piece of paper will immediately be located in
the left particle’s future.42 Sufficiency∗ thus entails, wrongly, that the left particle’s being

at every point along S at t+, with each result transcribed on a separate piece of paper. If the proton had been
absent from x at t, at least one measurement apparatus would have to give a different reading, and so at
least one piece of paper would be different at t++.

42Otherwise, if the spacetime structure is relativistic, simply wait long enough for the piece of paper to be
located in the future light-cone of the left particle at t.
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white at t causes the right particle’s being white at t.)
Now, another feature of synchronic laws is that they tend to generate mutual coun-

terfactual dependence. This is clearest in LOOP, where not only R = 1 counterfactually
depends on L = 1, but also (by an exactly symmetric argument) L = 1 counterfactually
depends on R = 1. Likewise, we may grant that, in GAUSS, if the electric flux through S
was 0, no proton would be present at x at t. So, as a second stab at the strategy, one might
propose the following:43

Sufficiency†: Necessarily, if (c, e) is a suitable pair of occurring events such
that e wouldn’t have occurred if c hadn’t occurred, and it’s not the case that c
wouldn’t have occurred if e hadn’t, then c causes e.

But the proposal succumbs to the same counterexamples. For Sufficiency† to avoid
the wrong result in GAUSS, the following counterfactual would have to hold:

(?G†) If the paper didn’t read “positive” at t++, then the proton wouldn’t be
present at x at t.

But t is much earlier than t++, and the counterfactual dependence tradition broadly adopts
Lewis’s distinction between standard and backtracking contexts for subjunctive conditionals,
cautioning us to evaluate the conditional in Sufficiency in the standard context. But,
clearly, (?G†) is false in the standard context. To bring this out intuitively: suppose t++

occurs a week after t. Then, at t++, you’d express (?G†) with the following subjunctive:

(??G†) If the paper didn’t read “positive” today, then the proton would be
absent at x a week earlier.

A true reading of (??G†) requires explicit backward reasoning: if the paper didn’t read
“positive” today, that would have to be because the proton was already absent a week
earlier. This parallels familiar backtracking cases: if I didn’t return the book today, that
would have to be because Susy and I agreed on a later date to begin with.

On a miracles account—again something the counterfactual dependence tradition
widely adopts (and should adopt)—the standard context instead only supports the follow-
ing: if the paper had not read “positive” today, the far past would be unchanged—instead,
a small miracle in the immediate past would have deleted the ink, smeared it beyond
recognition, incinerated the paper, or something of that sort.

So, neither synchronic laws’ synchronicity, nor their tendency to induce mutual
counterfactual dependence, can be exploited for easy fixes of Sufficiency. Instead, I say,
the problem must be addressed closer to its root.

43Thanks to [redacted] here.
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4 Conclusion

The preceding discussion suggests that there are two rather different sources of counterfac-
tual dependence: first, counterfactual dependence due to synchronic laws (e.g. Mirror Law,
Gauss); second, counterfactual dependence due to diachronic (or “dynamical”) laws.

Examples of diachronic laws are Newton’s Second Law (F = m · a) and two of
Maxwell’s laws (Faraday’s Law and Ampére’s Law, cf. fn. 12).44 They explain how
systems evolve over time: given the state of a system at one moment, a diachronic law gen-
erates its future (or, more generally, a probability distribution over possible futures).45 In
contrast to the constraints imposed by synchronic laws, this temporal evolution is plausibly
causal. The foregoing discussion thus suggests that a successful counterfactualist reduction
of causation must isolate the diachronic component of counterfactual dependence. How to
achieve this is now an open question.

Regardless of the approach taken, I hope to have demonstrated that standing still is
not an option. Any definition of causation must confront its consequences in worlds with
synchronic laws—something which no existing proposal does adequately.

Appendix

A Proof: Counterfactualist SEM Accounts & Sufficiency

Throughout this Appendix, I am concerned with acyclic SEMs. I also assume the validity
of Conditional Excluded Middle—` (A �→ B) ∨ (A �→ ¬B). This is the natural setting for
acyclic SEMs, since all value assignments to exogenous variables have unique solutions.

Now recall the counterfactualist notion of SEM adequacy:

Counterfactual Adequacy: Necessarily,M = (V , E) is adequate only if: V is
suitable and, for all Z ∈ V , [Z := fZ(V\{Z})] ∈ E iff for all values v of V\{Z},

V\{Z} = v �→ Z = fZ(v).

Throughout the Appendix, “adequate” is assumed to satisfy Counterfactual Adequacy,

44Other examples include the heat equation, the Navier-Stokes equations of fluid mechanics, and the
Schrödinger equation.

45Mathematically, diachronic laws will tend to take the form of partial differential equations involving time
derivatives.
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which I’ll abbreviate as CA.

A.1 Paths in Adequate Models

In a slight abuse of notation, where E is a set of structural equations, let (X1 → X2 →
...→ Xn) ∈ E denote the fact that, for each i = 1, ..., n − 1, fXi+1 is non-constant in Xi

(for some assignment of values to V\{Xi+1, Xi}). Recall that, when M = (V , E) and
(X1→X2→ ...→Xn) ∈ E , I say thatM contains a directed path from X1 to Xn.

We now show that, if there’s an immediate directed path from one variable to another in
an adequate acyclic model, then adding an extra variable to the model either preserves
that path or extends it by one variable, unless it creates cycles.

Lemma A1. Path Extension. For any adequate acyclic model M = (V , E),
any C, E ∈ V , and any variable X: if (C→E) ∈ E andM′ = (V ∪ {X}, E ′) is
adequate and acyclic, then either (C→E) ∈ E ′ or (C→X→E) ∈ E ′.

Proof of Lemma A1: LetM = (V , E) be adequate with (C→E) ∈ E . By CA, there are values
c∗, c∗∗, e∗, e∗∗, v∗ with c∗ 6= c∗∗ and e∗ 6= e∗∗ such that

C = c∗ ∧ V\{C, E} = v∗ �→ E = e∗, and (4)

C = c∗∗ ∧ V\{C, E} = v∗ �→ E = e∗∗. (5)

Let M′ = (V ∪ {X}, E ′) be adequate. By CEM, we have two cases—intuitively, they
correspond to either X screening off all dependence of E on C or failing to do so:

Case 1 (No Screening). There are values c†, c‡, e†, e‡, v, with c† 6= c‡ and e† 6= e‡, and a
value x of X such that

C = c† ∧ V\{C, E} = v ∧ X = x �→ E = e†, and

C = c‡ ∧ V\{C, E} = v ∧ X = x �→ E = e‡.

By CA, it follows that (C→E) ∈ E ′.

Case 2 (Screening). For every value x of X and v of V\{C, E}, there is a value ex,v of E
such that, for every value γ of C,

C = γ ∧ V\{C, E} = v ∧ X = x �→ E = ex,v. (6)

We first prove that (X→ E) ∈ E . The rule Conjunction Shift—(A �→ (B ∧ C)) ` ((A ∧
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B) �→ C)—is valid in any standard logic for counterfactuals (including Stalnaker (1968)
and Lewis (1973b)).46Given condition 4, CEM, and Conjunction Shift, there is a value x′ of
X such that

C = c∗ ∧ V\{C, E} = v∗ ∧ X = x′ �→ E = e∗. (7)

By condition 6,
C = c∗∗ ∧ V\{C, E} = v∗ ∧ X = x′ �→ E = e∗. (8)

Negation Transfer—(A�→ C), (A∧ B�→¬C) ` (A�→¬B)—is also valid in any standard
logic for counterfactuals.47 From 5, 8, and Negation Transfer,

C = c∗∗ ∧ V\{C, E} = v∗ �→ E = e∗∗ ∧ X 6= x′,

and so, by CEM and Conjunction Shift, there is a value x′′ 6= x′ such that

C = c∗∗ ∧ V\{C, E} = v∗ ∧ X = x′′ �→ E = e∗∗. (9)

From 9 and 6,
C = c∗ ∧ V\{C, E} = v∗ ∧ X = x′′ �→ E = e∗∗. (10)

Finally, by CA, 7, and 10, (X→E) ∈ E .
Second, we prove that either (C→ X) ∈ E or (E→ X) ∈ E . Let x be any value of X.

Since e 6= e′, either ex,v∗ 6= e∗ or ex,v∗ 6= e∗∗. Suppose ex,v∗ 6= e∗. Then, from conditions 4
and 6, Negation Transfer, and Agglomeration,

C = c∗ ∧ V\{C, E} = v∗ �→ (X 6= x ∧ E = e∗),

Thus, by CEM, there is an x∗ 6= x such that

C = c∗ ∧ V\{C, E} = v∗ �→ (X = x∗ ∧ E = e∗). (11)

Suppose, for contradiction, that

C = c∗∗ ∧ V\{C, E} = v∗ �→ X = x∗.

46Given Agglomeration (see below), Conjunction Shift is equivalent to Cautious Monotonicity,
(A �→ B), (A �→ C)) ` ((A ∧ B) �→ C).

47Given CEM, Negation Transfer is the contrapositive of Rational Monotonicity, ((A �→ B) ∧
¬(A �→ ¬C)) ⊃ ((A ∧ C) �→ B).
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Then, by 5,
C = c∗∗ ∧ V\{C, E} = v∗ �→ (X = x∗ ∧ E = e∗∗). (12)

By Conjunction Shift, 11 and 12 give us, respectively,

C = c∗ ∧ V\{C, E} = v∗ ∧ X = x∗ �→ E = e∗), and

C = c∗∗ ∧ V\{C, E} = v∗ ∧ X = x∗ �→ E = e∗∗,

in contradiction with condition 6. So, there is a x∗∗ 6= x∗ such that

C = c∗∗ ∧ V\{C, E} = v∗ �→ X = x∗∗. (13)

By Conjunction Shift, 11 entails

C = c∗ ∧ V\{C, E} = v∗ ∧ E = e∗ �→ X = x∗, (14)

and 13 and 5 together entail

C = c∗∗ ∧ V\{C, E} = v∗ ∧ E = e∗∗ �→ X = x∗∗. (15)

14 and 15 together entail that either (C→X) ∈ E or (E→X) ∈ E .48

So, we have that (X→ E) ∈ E and either (C→ X) ∈ E or (E→ X) ∈ E . In the first
case, we have (C→X→E) ∈ E , as desired. In the second case, we have (E→X) ∈ E and
(X→E) ∈ E , in contradiction withM′’s acyclicity. So, (C→X→E) ∈ E . �

We say that there is a directed path from a set X to a variable Y iff there is a directed path
from some member of X to Y. Lemma A1 entails the following theorem:

48For suppose that (C→X) 6∈ E ; that is, for all v, e, there is a xv,e such that, for all γ,

C = γ ∧ V\{C, E} = v ∧ E = e �→ X = xv,e.

Then 15 entails
C = c∗ ∧ V\{C, E} = v∗ ∧ E = e∗∗ �→ X = x∗∗,

which together with 14 entails (E→X) ∈ E .
Analogously, suppose that (E→X) 6∈ E ; that is, for all c, v, there is a x[c, v] such that, for all ε,

C = c ∧ V\{C, E} = v ∧ E = ε �→ X = x[c, v].

Then 14 entails
C = c∗ ∧ V\{C, E} = v∗ ∧ E = e∗∗ �→ X = x∗,

which together with 15 entails (C→X) ∈ E .
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Theorem A1. Let C ⊆ V and E ∈ V be such that E��∈C. If there are values c, c′, e
such that C = c �→ E = e and C = c′ �→ E 6= e, then in any adequate acyclic
modelM = (V , E) with C ∪ {E} ⊆ V , there is a directed path from C to E.

Proof of Theorem A1: Let C and E be such that E��∈C. We proceed by induction on the number
of variables n in V . Our base case is n = |C|+ 1. We want to show that, for any adequate
acyclic modelM = (V , E) with V = C ∪ {E}, there is a directed path from C to E. We
prove this base case, in turn, by (sub-)induction on the number k ≤ n of variables in |C|.

• Sub-induction on k: The base case k = 1 for our sub-induction is immediate: given
CEM, C = c′ �→ E 6= e entails that there is an e′ 6= e with C = c′ �→ E = e′, and
given CA, it then follows from C = c �→ E = e and C = c′ �→ E = e′ that there’s a
path from C = {C} to E inM. For the induction step, k 7→ k + 1 ≤ n, assume (as the
induction hypothesis) that, for any C, E with E��∈C and |C| = k, and any adequate,
acyclic modelM = (V , E) with V = C ∪ {E} such that there are value assignments
c, c′, e with C = c �→ E = e and C = c′ �→ E 6= e, there is a directed path from C
to E. Let nowM′ = (V ′, E ′) with V ′ = C′ ∪ {E′} and |C′| = k + 1 such that there
are value assignments c, c′, e with C′ = c′ �→ E′ = e′ and C′ = c′ �→ E′ 6= e. Pick
any V ∈ V ′\(C′ ∪ {E′}). It follows from the definition of suitability that, whenever a
variable set X is suitable, any subset of X is suitable. Hence, by Corollary A1, if any
model with variable set X is adequate, then for any X ∈ X, there is an adequate model
with variable set X\{X}. In particular, there is an adequate modelM = (V , E) with
V = V ′\{V}. Hence, by the induction hypothesis, (X1→X2→ ...→Xn−1→Xn) ∈ E
for some {Xi}n

i=1 ⊆ V with X1 ∈ C and Xn = E. Lemma A1 entails that, for all
i = 1, ..., n, either (Xi → Xi+1) ∈ E ′ or (Xi → V → Xi+1) ∈ E ′. Hence, for every
i = 1, ..., n there is a path from Xi to Xi+1 inM′, and so there is a path from X1 to E,
and hence from C to E, inM′.

This proves the base case.
For the (main) induction step, n 7→ n + 1, suppose (as the induction hypothesis) that

in any adequate acyclic modelM = (V , E) with |V| = n ≥ |C|+ 1, if C ∪ {E} ⊆ V with
E��∈C, thenM contains a directed path from C to E. LetM′ = (V ′, E ′) with |V ′| = n + 1
and C ∪ {E} ⊆ V ′ be an adequate acyclic model. Choose any V ∈ V ′\(C ∪ {E}). Then, by
the same reasoning as before, there is an adequate modelM = (V , E) with V = V ′\{V}.
By the induction hypothesis, (X1→ X2→ ...→ Xn−1→ Xn) ∈ E for some {Xi}n

i=1 ⊆ V
with X1 ∈ C and Xn = E. By Lemma A1, for all i = 1, ..., n, either (Xi→ Xi+1) ∈ E ′ or
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(Xi→V→Xi+1) ∈ E ′. Hence, for every i = 1, ..., n there is a path from Xi to Xi+1 inM′,
and so there is a path from X1 to E, and hence from C to E, inM′. �

A.2 Counterfactual Dependence and Dependence in Acyclic Models

For any SEM M = (V , E), VEex and VEen denote M’s exogenous variables and M’s en-
dogenous variables, respectively. Where the model is obvious from context, I’ll omit the
superscripted E .

For any SEM M = (V , E) with X ∈ Ven, let M〉X〈 = (V\{X}, E〉X〈) be the result of
collapsing X in M: where [X := fX(V\{X})] ∈ E , E〉X〈 is the result of deleting [X :=
fX(V\{X})] from E and replacing all other instances of X in E by fX(V\{X}). A standard
result about acyclic SEMs is that collapsing preserves entailment relations. It also turns
out to preserve adequacy.

Lemma A2.1. Endogenous Collapse: LetM = (V , E) be acyclic with X ∈ Ven.
ThenM〉X〈 is acyclic, adequate, and, for all Y, Z ⊆ V\{X} and values y, z of Y
and Z,

(M(Y← y) � Z = z)↔ (M〉X〈(Y← y) � Z = z).

Proof of Lemma A2.1: BothM〉X〈’s acyclicity and the biconditional are standard results. It
remains to proveM〉X〈’s adequacy.

Left-to-right direction: SupposeM is adequate. Let Z 6= X with [Z := f 〉X〈Z (V\{X, Z})] ∈
E〉X〈. Then [Z := fZ(V\{Z})] ∈ E with fZ either (i) constant in X or (ii) non-constant in X.

Suppose (i). Then fZ(V\{Z}) = f 〉X〈Z (V\{X, Z}). SinceM is adequate, it follows by CA
that, for all values v of V\{Z},

V\{Z} = v �→ Z = fZ(v),

and hence, for all values x of X and v′ of V\{X, Z},

X = x ∧ V\{X, Z} = v′ �→ Z = f 〉X〈Z (v′).

By the disjunction rule—(A �→ C) ∧ (B �→ C) ` ((A ∨ B) �→ C)—it follows that, for
all values v′ of V\{X, Z},

V\{X, Z} = v′ �→ Z = f 〉X〈Z (v′).

Suppose instead (ii). SinceM is adequate, it follows by CA that, for all values v of
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V\{X},
V\{X} = v �→ X = fX(v). (16)

SinceM is acyclic, 16 implies that, for all values v′ of V\{X, Z} and z of Z,

V\{X, Z} = v′ �→ X = fX(z, v′). (17)

ByM’s adequacy, we also have

X = fX(z, v′) ∧ V\{X, Z} = v′ �→ Z = fZ( fX(z, v′), v′). (18)

From 17, 18, and Cautious Transitivity—((A �→ B) ∧ ((A ∧ B) �→ C)) ` (A �→ C)—we
obtain, for all values v′ of V\{X, Z}, and z of Z,

V\{X, Z} = v′ �→ Z = fZ( fX(z, v′), v′). (19)

Since fZ( fX(z, v′), v′) is constant in z, fZ( fX(z, v′), v′) = f 〉X〈Z (v′). Hence, from 19, for all
v′ of V\{X, Z},

V\{X, Z} = v′ �→ Z = f 〉X〈Z (v′).

Right-to-left direction: Conversely, suppose that, for some function g and for all v′ of
V\{X, Z},

V\{X, Z} = v′ �→ Z = g(v′). (20)

Let [X := fX(V\{X})] ∈ E . SinceM is adequate, it follows by CA that, for all zof Z and
v′ of V\{X, Z},

Z = z ∧ V\{X, Z} = v′ �→ X = fX(z, v′). (21)

Either (i) fX(V) is constant in Z or (ii) fX(V) is non-constant in Z. Suppose (i). Then, by
the Disjunction Rule and 21,

V\{X, Z} = v′ �→ X = fX(z, v′). (22)

From 20, 22, Aggregation, and Conjunction Shift, for all z of Z and v′ of V\{X, Z},

X = fX(z, v′) ∧ V\{X, Z} = v′ �→ Z = g( fX(z, v′), v′).

SinceM is adequate, it follows by CA that [Z := h(X,V\{X, Z})] ∈ E with h|X∈range( fX) =

g. Since [X := fX(Z,V\{X})] ∈ E with fX constant in Z, we thus have [Z := h〉X〈(V\{X, Z})] ∈
E〉X〈. Since h|X∈range( fX) = g, we have h〉X〈(V\{X, Z}) = g, and thus [Z := g(V\{X, Z})] ∈
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E〉X〈.
Suppose instead (ii). SinceM is acyclic, fZ is constant in X. Thus, sinceM is adequate,

we have by CA and the Disjunction Rule that, for all v′ of V\{X, Z} and x of X,

V\{X, Z} = v′ �→ Z = fZ(x, v′). (23)

From 20, 23, and V ’s suitability (cf. fn. 35), fZ(x, v′) = g(v′) for all v′ of V\{X, Z}. Thus,
[Z := g(V\{X, Z})] ∈ E ; since g is independent of X, [Z := g(V\{X, Z})] ∈ E〉X〈. �

Lemma A2.2. Exogenous Substitution. Let M = (V , E) be adequate and
acyclic. Then, for any U ∈ Vex:M(U ← u) is acyclic; if moreover U = u, then
M(U ← u) is adequate.

Proof of Lemma A2.2: Since substitution can only remove edges, acyclicity is immediate. It
remains to prove adequacy.

For any function fZ, let f u
Z denote the result of replacing all instances of U in fZ by

u. Let U = u. We want to show that [Z := f u
Z(V\{U, Z})] ∈ E(U ← u) iff, for all v of

V\{U},
V\{U, Z} = v �→ Z = f u

Z(v).

Right-to-left direction: Suppose that, for all v of V\{U, Z},

V\{U, Z} = v �→ Z = f u
Z(v). (24)

Suppose, for contradiction, that for some v† and some z† 6= f u
Z(v

†),

U = u ∧ V\{U, Z} = v† �→ Z = z†. (25)

By 24, 25, Negation Transfer, and Conjunction Shift,

V\{U, Z} = v† ∧ Z = z† �→ U 6= u. (26)

Since U = u, we have, by And-to-If,

V\{U, Z} = v∗ ∧ Z = z∗ �→ U = u. (27)

where V\{U} = v∗ and Z = z. By Theorem 1, Conditions 26 and 27 entail that there’s
a directed path from V\{U} to U, in contradiction with the assumption that U ∈ Vex.
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Therefore, we have, for all values x of X and w of V\(X ∪ {U}),

U = u ∧ V\{U, Z} = v �→ Z = f u
Z(v). (28)

Since M is adequate, by CA condition 28 entails that [Z := fZ(V\{Z})] ∈ E with
fZ(u, v) = f u

Z(v) for all v of V\{U, Z}. Hence [Z := f u
Z(V\{U, Z})] ∈ E(U ← u).

Left-to-right direction: Suppose [Z := f u
Z(V\{U, Z})] ∈ E(U ← u). Then [Z :=

fZ(V\{Z})] ∈ E with fZ(u,V\{U, Z}) = f u
Z(V\{U, Z}). SinceM is adequate, it follows

by CA that, for all values v of V\{Z},

V\{Z} = v �→ Z = fZ(v),

and hence, for all v′ ∈ V\{U, Z}

U = u ∧ V\{U, Z} = v′ �→ Z = f u
Z(v

′). (29)

Suppose, for contradiction, that for some v† and y†,

V\{U, Z} = v† �→ Z 6= f u
Z(v

†). (30)

By Negation Transfer, conditions 29 and 30 entail

V\{U, Z} = v† �→ U 6= u. (31)

Since U = u, by And-to-If,

V\{U, Z} = x∗ �→ U = u, (32)

where V\{U, Z} = x∗. By Theorem A1, conditions 31 and 32 now entail that there is a
directed path from V\{U, Z} to U inM, in contradiction with U ∈ Vex. So, for all values
v of V\{U, Z},

V\{U, Z} = v �→ Z = f u
Z(v). �

Theorem A2. Counterfactual Dependence and Dependence in a Model: Let
M = (V , E) with C, E ∈ V be adequate and acyclic. Then, if Vex\{C} = v and
C = c �→ E = e,

M(Vex\{C} ← v, C ← c) � E = e.
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Proof of Theorem A2: If C and E are the same variable, then C = c �→ E = e entails that
c = e and soM(Vex\{C} ← v, C ← c) � E = e immediately. So assume, in the following,
that C and E are different variables.

We proceed by induction on the number n of variables in the model. For the base case,
let n = 2 and letM = (V , E) with V = {C, E} be adequate. Suppose E ∈ Vex. Then since
C = c �→ E = e, we have (by CA) that, C = c′ �→ E = e for all values c′ of C. Thus, by
Modus Ponens—A, A �→ B ` B, valid in any standard counterfactual logic—E = e. Hence
Vex\{C} = {E} and v = e, and so M(Vex\{C} ← v, C ← c) � E = e. Now suppose
E 6∈ Vex. Then Vex\{C} = ∅ and [E := fE(C)] ∈ E , with fE non-constant in C. Since
C = c �→ E = e, we have fE(c) = e, and thusM(C ← c) � E = e.

For the induction step, assume that for all adequate acyclic modelsM′ = (V ′, E ′) with
C, E ∈ V ′ and |V ′| = n ≥ 2: for any v′, c′, and e′, if V ′ex\{C} = v′ and C = c′ �→ E = e′,

M′(V ′ex\{C} ← v′, C ← c′) � E = e′.

Let nowM = (V , E) with C, E ∈ V and |V| = n + 1 be adequate and acyclic. Moreover,
suppose Vex\{C} = v, and C = c �→ E = e. Since n + 1 ≥ 3, there is an X ∈ V\{C, E}.
Either X ∈ Ven or X ∈ Vex.

Suppose X ∈ Ven. By Lemma A2.1,M〉X〈 is acyclic and adequate, and

(M(Vex\{C} ← v, C ← c) � E = e)↔ (M〉X〈(Vex\{C} ← v, C ← c) � E = e).

ButM〉X〈 has variable set V〉X〈 with |V〉X〈| = n. Thus, by the inductive hypothesis,

M〉X〈(Vex\{C} ← v, C ← c) � E = e,

and therefore
M(Vex\{C} ← v, C ← c) � E = e.

Suppose instead X ∈ Vex. Then

M(Vex\{C} ← v, C ← c) = (M(X ← v)) (Vex\{C, X} ← v, C ← c).

ButM(X ← v) has variable set V\{X} with |V\{X}| = n and exogenous variable set
Vex\{X}. Moreover, by Lemma A2.2,M(X ← v) is acyclic and adequate. Thus it follows
by the inductive hypothesis that

(M(X ← v)) (Vex\{C, X} ← v, C ← c) � E = e,
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and therefore
M(Vex\{C} ← v, C ← c) � E = e. �

WhenM(Vex\{C} ← v, C ← c) � E = e andM(Vex\{C} ← v, C ← c′) � E = e′ for
some c′ 6= c and e′ 6= e, say that E depends on C inM relative to Vex= v; if additionally
Vex = v, say that E depends on C inM (simpliciter).

A.3 SEM Accounts Entail Sufficiency (in the Absence of Cycles)

Recall:

Acyclic Sufficiency: Necessarily, if (c, e) is a suitable pair of actual events, X
and Z are variables representing alterations of c and e, respectively, and there is
an adequate, acyclic SEM including X and Z: then, if e wouldn’t have occurred
if c hadn’t occurred, c causes e.

We can now prove the following theorem. Where “adequate” definitionally satisfies CA:

Theorem A3. Sufficiency in Adequate Models entails Acyclic Sufficiency.

Proof of Theorem A3: Let (c, e) be a suitable pair of actual events such that ¬O(c)�→¬O(e).
Let X and Z be variables representing alterations of c and e, respectively, such that there
is an adequate, acyclic SEM M = (V , E) with X, Z ∈ V . To show that Sufficiency in
Adequate Models entails Acyclic Sufficiency, we now only need to show that it implies
that c causes e.

Since ¬O(c) �→ ¬O(e), by CEM there is a unique closest possible ¬O(c)-world in
which e doesn’t occur. Where values X = x and Z = z represent c’s and e’s actual
occurrence, respectively, let value x′ 6= x represent the non-occurrence of c, and z′ 6= z
the respective non-occurrence of e. We then have X = x′ �→ Z = z′. By And-to-If, we
moreover have X = x �→ Z = z.

Let v be such that Vex = v. By Theorem A2, X = x �→ Z = z and X = x′ �→ Z = z′

entail, respectively, thatM(Vex\{X} ← v, X ← x) � Z = z andM(Vex\{X} ← v, X ←
x′) � Z = z′. Thus Z depends on X in M. Moreover, by Theorem A1, there is a one
directed path from X to Z inM. So, by Sufficiency in Adequate Models, c causes e. �
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